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Abstract
The ensemble-based history matching technique has 
been successfully applied to simultaneously estimate 
multiple petrophysical parameters for hydrocarbon 
reservoirs. The tuning petrophysical properties include 
horizontal and vertical permeability, porosity and three-
phase relative permeability curves. Four scenarios with 
different combination of the tuning parameters have 
been evaluated. The ensemble-based history matching 
technique is found to be capable of estimating multiple 
petrophysical parameters by conditioning the reservoir 
geological models to production history. The uncertainty 
range of production data generated from the updated 
models is reduced compared to that of initial models. 
However, the history-matched models may not always 
provide good production prediction results, especially 
when absolute permeability and relative permeability are 
tuned simultaneously. This further illustrates the non-
uniqueness of the history matching solutions. In addition, 
three-phase relative permeability curves are found to be 
estimated with good accuracy when absolute permeability 
fields are known.
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INTRODUCTION
History matching is a process aims to find a model such 
that the difference between the performance of the model 
and the production history of a reservoir is minimized 
(Tavassoli, 2004). It is a typical inverse problem where 
input parameters (e.g., permeability and porosity) of the 
flow system are estimated from matching system output 
(e.g., production) data. This inverse problem becomes 
more complicated as the parameters to be estimated 
normally outnumber the output data. Traditionally, history 
matching is performed by reservoir engineers based 
on a trial and error approach. Extensive manpower and 
experience are needed to conduct the manual history 
matching on a field-wide case. Recently, computer 
assisted history matching technique has been utilized 
to assist in automatically adjusting the parameters and 
accelerating the history matching process. Assisted history 
matching is a semi-automatic process where reservoir 
engineers use their engineering knowledge and experience 
with assistance of a computer program to perform 
history matching. With the advent of modern computer 
technology, high computational capacity allows reservoir 
engineers to use advanced nonlinear optimization methods 
to solve the inverse history matching problem. 

Several optimization algorithms have been proposed 
in the l i terature.  One of the main categories of 
optimization algorithm is the gradient-based algorithm, 
which includes the steepest descent, Newton, quasi-
Newton, and conjugate gradient methods. For example, 
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method 
(Yang & Watson, 1991), limited memory BFGS (LBFGS) 
method (Eydinov et al., 2009) and Levenberg-Marquardt 
algorithm (Reynolds et al., 2004; Chen et al., 2008) 

have been used to estimate relative permeability. These 
methods require the input of the gradient (first derivative) 
and/or Hessian matrix (second derivative) of the objective 
function. Computation of the gradient requires generating 
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sensitivity coefficients, which is the core of the above-
mentioned algorithms. Such generated sensitivity 
coefficients are dependent on the number of model 
parameters, number of observed data, and efficiency of 
the linear system solver. Another category of algorithm, 
which has been used in assisted history matching, is the 
global optimization algorithm. Global algorithms, such 
as genetic or evolutionary algorithm (Schulze-Riegert, 
2002; Choudhary et al., 2007; Yang et al., 2009) and 
simulated annealing (Datta-Gupta et al., 1995; Vasco 
et al., 1997), have been used to overcome some of the 
pitfalls of the gradient-based methods because they do not 
require derivative computation and use only the objective 
function value. 

In the past decade, the ensemble Kalman filter (EnKF) 
technique has been proved to be an efficient data 
assimilation method and successfully used in assisted 
history matching for estimating reservoir petrophysical 
parameters, such as porosity, absolute and relative 
permeability, fluid-contact depth. Numerous efforts have 
been made not only to investigate the characteristics 
of EnKF method, but also to improve the algorithm 
itself. Few attempts, however, have been made to study 
impacts of simultaneously tuning multiple parameters 
(e.g. absolute permeability and relative permeabilities) 
on the estimation and prediction results. More and more 
permanent downhole sensors are being deployed for 
monitoring and recording pressure, temperature, and/or 
flow rates. In this case, since the data output frequency 
is very high, it is important to incorporate these recorded 
parameters as soon as they are available to keep the 
reservoir model always up-to-date. Traditional history 
matching is not suitable for such a purpose because 
of the heavy computational burden and the high data 
sampling frequency. 

In this paper, an ensemble-based history matching 
technique has been successfully applied to simultaneously 
estimate multiple petrophysical parameters for a 
hydrocarbon reservoir when dealing with different tuning 
scenarios. The well-known UN certainty Quantification 
(PUNQ)-S3 reservoir model, which is a standard synthetic 
test case that is based on a real field, was used as the 
testing model. The tuning petrophysical properties include 
horizontal and vertical permeability, porosity and three-
phase relative permeability curves. Efforts have been 
made to tune and estimate petrophysical parameters for 
four different scenarios, and the respectively estimation 
and prediction results are subsequently presented and 
discussed. Finally, conclusions are presented.

1.  ENSEMBLE KALMAN FILTER
The ensemble Kalman filter (EnKF) was introduced 
to overcome some of the problems of the extended 
Kalman filter. In particular, instead of directly estimating 

the necessary statistics based on linear assumptions, 
t he  EnKF method  uses  an  ensemble  o f  mode l 
representations from which all necessary statistics can 
be directly computed approximately under the Bayesian 
framework. The EnKF method has been widely applied 
in the areas of weather forecasting, oceanography and 
hydrology (Hamill, 2006). In these applications, only the 
dynamic variables need to be tuned. It has recently been 
introduced to the petroleum industry for continuously 
updating reservoir geological models, within which 
both static and dynamic variables are simultaneously 
tuned to assimilate new measurements. The EnKF 
technique is a Monte-Carlo method where the covariance 
matrix is updated from a limited number of ensembles, 
mathematical description of the method can be found in 
detail elsewhere (Evensen et al., 2006). 

Compared to the gradient-based optimization methods, 
the EnKF method does not require the gradient of the 
objective function. In addition, the EnKF method only 
uses the input and the output of a reservoir simulator so 
that it can be integrated with any reservoir simulator. Due 
to these features, EnKF method is easier to implement 
for assisted history matching compared to the gradient-
based optimization methods. Nævdal et al. (2003) used 
the EnKF method to update the static parameters in near-
well reservoir models by tuning the permeability field. 
Brouwer et al. (2004) used the combination of the EnKF 
method for continuous model updating with an automated 
adjoint-based technique to optimize the waterflooding 
strategy. Results from the previous studies showed that the 
EnKF method was very efficient and robust. However, the 
estimation quality of permeability field may deteriorate 
at a later time of the history matching period, which 
was often referred to as the “filter divergence”. Gu and 
Oliver (2005; 2007) used the EnKF method to update the 
porosity and permeability fields as well as the saturation 
and pressure fields, and then applied it to match the three-
phase production data at wells from the PUNQ-S3 model. 
Gao et al. (2006) found that the randomized maximum 
likelihood (RML) method and the EnKF method provide 
comparable uncertain characterization results for the 
PUNQ-S3 model. Heidari et al. (2011) updated the 
porosity and permeability fields of PUNQ-S3 model using 
different ensemble size and assimilation step and found 
that a larger ensemble size and a smaller time step result 
in better estimation results. 

It was found that accuracy of the traditional EnKF 
methods for nonlinear and multimodal problems may not 
be guaranteed (Zafari & Reynolds, 2007; Li & Reynolds, 
2009). Li and Reynolds (2009) presented two iterative 
EnKF (IEnKF) procedures to solve the strongly nonlinear 
systems for history matching. The application of this 
method on a synthetic study showed that in some cases an 
adjoint solution back to time zero can improve the match 
and prediction quality; however, the iterations are needed 
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only at time steps when data cannot be matched. Chen et 
al. (2009) proposed a reparameterization method to handle 
strong non-Gaussian properties in history matching. 
In addition, different forms of localization functions 
(Arroyo-Negrete et al., 2008; Chang et al., 2010; Chen 
& Oliver, 2010a, b) are introduced to integrate with the 
EnKF method to avoid unnecessary updates far away from 
observation data. More comprehensive reviews of the 
application of the EnKF technique in updating reservoir 
simulation models have been presented by Aanonsen et al. 
(2009) and Oliver and Chen (2010), respectively.

One of the limitations pertaining to the EnKF 
algorithm is that significant inconsistency may occur 
between the updated static and dynamic variables after 
the EnKF updating step. This is because the dynamic 
parameters and the static parameters are updated 
sequentially. To overcome such a limitation, an iterative 
EnKF algorithm (Wen & Chen, 2006, 2007) is used 
in this study to ensure that the updated static and 
dynamic parameters are consistent at each time step. 
More specifically, at each assimilation time point, a 
confirmation procedure is performed after the EnKF 
forecast step. The confirmation procedure is basically 
to run the simulation again from the last time step to the 
assimilation time step using the updated static variable 
to obtain the updated dynamic variable. In this study, the 
confirmation procedure is performed at every time step, 
though this may not be necessary for other cases as shown 
by Wen and Chen (2007).

2 .   R E L A T I V E  P E R M E A B I L I T Y 
REPRESENTATION MODEL
In the context of history matching, static vectors, 
m, of a model mainly include the local grid discrete 
parameters (e.g., horizontal and vertical permeability) 
and global parameters (e.g., relative permeability data). 
A representation model is required to generate relative 
permeability curves used for reservoir simulation, while 
it should have limited numbers of controlling parameter, 
which can be included as part of the static vector. There 
are two categories of relative permeability representation 
models: the parametric model and the non-parametric 
model. The parametric model uses explicit equations to 
generate relative permeability curves, assuming relative 
permeability curves fit into the shape of a certain type 
of parametric model (e.g., power law model). Due to its 
simplicity, the power law model has been widely used to 
represent relative permeability curves (Lee et al., 1987; 
Reynolds et al., 2004; Li et al., 2009). The non-parametric 
model is more general and flexible as there is no 
assumption regarding the shape of relative permeability 
curves. For example, the B-spline model has been utilized 
in various studies to represent relative permeability 
(Watson et al., 1988; Yang and Watson, 1991; Kulkarni & 

Datta-Gupta, 2000; Okano et al., 2005; 2006; Eydinov et 
al., 2009; Li et al., 2010). 

In this study, the power law model was used to 
represent the three-phase relative permeability curves. For 
the oil-water system, 

  wb
wDwrw Sak    (1)

  ob
wDoro Sak  1   (2)

where krw and kro are the relative permeabilities 
of water and oil, respectively; aw and ao are relative 
permeabilities of water at Sw=1-Sro and oil at Sw=1-Swc, 
respectively; bw and bo are exponential or shape factors for 
determining the shape of relative permeability curves; and 
the dimensionless water saturation, SwD , is defined as,
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where krg and krog are relative permeabilities of gas and 
oil, respectively; ag and aog are gas relative permeability 
at Sg=1-Sorg-Swc and the relative permeability to oil at 
Sg=Sgc, respectively; Sg is gas saturation; Sorg is residual oil 
saturation; and bg and bog are exponential factors.

As for three-phase flow in reservoirs, water and gas 
relative permeabilities can still be calculated by using 
Equations (1) and (4); however, the relative permeability 
to oil, kro, is calculated by using Stone’s Model II method 
(Stone, 1973) as follows.
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From Equation (1) to Equation (6), it can be seen that 
a total of twelve parameters define relative permeability 
curves in a three-phase flow system. If the phase 
relative permeability is defined by normalizing the 
effective permeability of each phase by the absolute oil 
permeability at irreducible water saturation (Eydinov et 
al., 2007; Chen et al., 2008), then ao=aog=1. So relative 
permeability vector, mkr, which is part of the static vector, 
m, can be expressed as,

 oggwogwgcwcorgorwkr bbbbaaSSSS ,,,,,,,,,m   (7)

These parameters can be classified into two groups, i.e., 
the first six parameters are endpoints and the remaining 
four parameters are shape factors.

The relative permeability vector, mkr , must be obtained 
to evaluate relative permeability of a three-phase system. 
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It remains a challenging task to accurately determine the 
endpoints of relative permeability curve by using the 
assisted history matching (Chen et al., 2008). To simplify 
the model, it is often assumed that endpoints are known 
and thus the number of parameters in Equation (7) can be 
further reduced. In this study, the endpoints of the relative 
permeability curves were assumed to be known, thus only 
shape factors were estimated using history matching.

 oggwokr bbbb ,,,m   (8)

3.  PUNQ-S3 MODEL
The performance of the ensemble-based history matching 
technique was investigated using the well-known 
Production forecasting with the PUNQ-S3 reservoir 
model, which has been used by many research groups to 
test the ability of different methods in terms of history 
matching and uncertainty qualification (e.g., Floris et al., 
2001; Gu & Oliver, 2005; Gao et al., 2006; Liu & Mcvay, 
2010; Wang et al., 2010). The PUNQ-S3 model has been 
taken from a reservoir engineering study on a real field 
operated by Elf Exploitation (Floris et al., 2001). It was 
qualified as a small-size industrial reservoir engineering 
model. The data available for the PUNQ-S3 model 
included the porosities and permeabilities at well sites, and 
the synthetic production history of the first 8 years.

The task is to predict the total oil production after 16.5 
years including uncertainty quantification. The model 
contains 19×28×5 uniform grid blocks with an areal 
dimension of 180×180 m2, among which 1761 blocks are 
active. The oil, water and gas density at surface conditions 
is 911.93, 1032.04 and 0.83 kg/m3, respectively. The gas-
oil contact and the oil-water contact are located at 2355.0 
and 2394.7 m, respectively. As shown in the top structure 
map (see Figure 1), the field is bounded to the east and 
south by a fault, and linked to the north and west to a 
fairly strong aquifer. A small gas cap is located in the 
center of the dome-shaped structure. The field initially 
contains 6 production wells located around the gas-oil 
contact. Due to the presence of a strong aquifer, there is 
no injection well in the reservoir. The geometry of the 
field has been modeled using corner-point geometry.

The original PUNQ-S3 reservoir model is generated 
with a simulation period of 16.5 years. The first year is for 
extended well testing, which consists of four three-month 
production periods, each having its own production rate. 
After the extended well test, all wells are shut-in for three 
years. During field production, two weeks of each year 
are needed for each well to do a shut-in test to collect the 
corresponding pressure data. The wells are operated under 
production constraint, i.e., after falling below a limiting 

bottomhole pressure (BHP), they will be switched to the 
preset BHP constraint, which is 12000 kPa for all 6 wells. 
The “true” total oil recovery after the 16.5 year is 3.92×106 
Sm3. The reference production data are generated by using 
a reservoir simulator. 

Figure 1
Top Structure Map of the PUNQ-S3 Reservoir (Floris 
et al., 2001)

The reference production data types used in history 
matching process include BHP, oil production rate (OPR), 
water-cut (WC) and gas-oil ratio (GOR). Production data 
are available at 15 time steps, the number of the available 
reference production data at each time step is presented in 
Table 1. Note that the number of reference production data 
is different in different time steps. The observation data 
is generated by adding Gaussian noise where zero mean 
has been added to the reference production data to mimic 
the errors in such data. The noise level on BHP, GOR, 
WC and OPR are 100 kPa, 10%, 1% and 0.0001 Sm3/d, 
respectively. It should be noted that observation data noise 
level is not correlated to time. 
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Table 1
Reference Production Data Used in History Matching

Time index Time (Days)
Available data points

BHP GOR WC OPR

1 1.01 6 6 - 6
2 91.00 6 6 - 6
3 182.00 6 6 - 6
4 274.00 6 6 - 6
5 1642.00 6 6 - 6
6 1826.00 6 6 - 6
7 1841.00 6 6 - 6
8 2008.00 6 6 - 6
9 2192.00 6 6 - 6
10 2373.00 6 6 1 6
11 2557.00 6 6 1 6
12 2572.00 6 6 1 6
13 2738.00 6 6 1 6
14 2922.00 6 6 2 6
15 2936.00 6 6 - 6
Total - 90 90 6 90

The heterogeneity of porosity and permeability fields is 
modeled using the Gaussian random fields. The properties 
generated in each layer are performed independently. In 
each layer, the correlation coefficient between porosity 
and horizontal permeability is 0.8, correlation between 
horizontal and vertical permeability is also 0.8. The 
detailed assumptions and procedures that are used to 
generate the reference case can be found elsewhere (Floris 
et al., 2001). The reference horizontal and vertical absolute 
permeability and porosity fields for Layer #1 are shown 
in Figure 2. Parameters of other layers can be found 
elsewhere (Li, 2010). The reference relative permeability 
(see Figures 3a and b) is generated using the power law 
model together with the parameters listed in Table 2. 

Table 2
Reference Relative Permeability Parameters of the 
PUNQ-S3 Model

Endpoint parameter Value Shape parameter Value

Sorw 0.0 bo 2.5

Swc 0.2 bw 4.0

Sorg 0.2 bog 3.1

Sgc 0.0 bg 6.0

aw 1.0

ao 0.9
ag 0.2

4.  TESTING SCENARIOS
In petroleum industry, scarce information is available 
at well sites, thus there normally exists a high level of 
uncertainty in various subsurface petrophysical properties 
like porosity (φ), horizontal permeability (kh), vertical 

permeability (kv) and relative permeability (kr). In this 
study, four different testing scenarios have been set up 
in order to evaluate performance of estimating different 
types of reservoir petrophysical properties using the newly 
developed ensemble-based history matching technique. 
Scenario #1:  Porosity together with horizontal and 

vertical absolute permeability fields 
are estimated by history matching 
the production history, assuming that 
relative permeability for oil, water, 
and gas phases are known without 
uncertainty.

Scenario #2:  Only relative permeability for oil, water, 
and gas phases are assumed to be the 
unknown parameters, while porosity 
and horizontal and vertical absolute 
permeability fields are known without 
uncertainty. 

Scenario #3:  Horizontal  and ver t ical  absolute 
permeability, relative permeability and 
porosity are all tuned simultaneously 
during the history matching process. 

Scenario #4:  Relative permeability for oil, water, 
and gas phases together with porosity 
are estimated by history matching, 
while horizontal and vertical absolute 
permeability fields are assumed to be 
known without uncertainty.

The detailed configurations of four testing scenarios 
are shown in Table 3. Note that cells with the symbol 
“+” mean the corresponding petrophysical properties 
are tuned in the history matching process, whereas the 
petrophysical properties with “-” marks are assumed to 
be known without uncertainty and thus will not be tuned. 
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(g) Updated φ (#1) (h) Updated kh (#1) (i) Updated kv (#1)

(j) Updated φ (#3) (k) Updated kh (#3) (l) Updated kv (#3)

Figure 2
Reference, Initial and Updated Reservoir Porosity, Horizontal and Vertical Permeabilities for Layer #1 from 
Scenarios #1 and #3, Respectively

(a) Reference φ (b) Reference kh (c) Reference kv

(d) Initial φ (e) Initial kh
(f) Initial kv
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Figure 3
Reference, Initial and Updated Relative Permeability Curves for Oil-Water (Left Column) and Oil-Gas (Right 
Column) from Scenarios #2, #3 and #4, Respectively
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In each scenario, as listed in Table 3, the total number 
of parameters in each member varies accordingly when 
different petrophysical parameters are tuned. For example, 
in Scenario #1, three types of petrophysical parameters are 
tuned in each grid block, thus a total of 7980 parameters 
are tuned in each model. It is worthwhile mentioning that, 
the same reference production data, as listed in Table 1, 

are used for all scenarios. For Scenarios #1, #3 and #4, 80 
ensemble members are used. An ensemble size of this order 
has been applied to similar applications (Gu & Oliver, 
2005; Lorentzen et al., 2005). For Scenario #2, a smaller 
ensemble size of 50 is used because only four relative 
permeability shape factors are tuned in this scenario. 

Table 3
Testing Scenarios Configuration

Scenario index
Petrophysical properties

Tuning parameter number Ensemble size
φ kh kv kr

1 + + + - 7980 80
2 - - - + 4 50
3 + + + + 7984 80
4 + - - + 2664 80

5.  RESULTS AND DISCUSSION

5.1  Scenario #1
For Scenario #1, both initial permeability and porosity 
fields need to be generated. Relative permeability curves 
are not tuned in Scenario #1, and thus do not need to 
be initialized. The initial ensembles were generated, 
assuming there is no correlation between porosity and 
permeability. The absolute permeability and porosity 
fields of the initial ensembles are generated using the 
Gaussian geostatistical simulation tools embedded in 
the CMG Builder (Version 2010.10). These parameter 
fields are generated using geostatistical parameters that 
are used to generate the true case (Gao et al., 2006). The 
porosity, horizontal and vertical permeability in each 
layer is generated by constraining to the hard data that are 
observed at well sites. 

The mean value of the porosity, horizontal permeability 
and vertical permeability of Layer #1 of the initial 
ensembles are shown in Figure 2. These fields are average 
values for 80 conditional geostatistical simulations. It can 
be seen from these figures that, the mean property fields 
of initial ensemble are much smoother than the reference 
cases due to the fact that when the ensemble size is large, 
the mean value of the Gaussian sequential simulation 
converges to the Kriged solution (Yarus, 1994). As a 
result of taking average among all ensemble members, the 
extreme values of the properties in Layers #1 and #3 are 
not found in the mean of the initial ensemble. For example, 
comparing Figure 2a with Figure 2d, it can be seen that 
the high porosity zone disappeared in the average initial 
porosity field. To meet the Gaussian assumption of the 
EnKF method, a natural logarithm transformation is used 
for the permeability data in history matching process, i.e., 
the log values of horizontal and vertical permeability are 
tuned using the ensemble-based technique in the history 
matching process. The porosity data is not transformed.

The mean value of the updated porosity, horizontal 
permeability and vertical permeability fields of Layer 
#1 from Scenario #1 are also shown Figure 2. It can be 
seen that, the updated values are closer to the true case. 
For example, even though the updated porosity in Layer 
#1 (Figure 2g) is not identical to the reference case (see 
Figure 2a), the region of high porosity of the updated case 
is much closer to the reference case than that of the initial 
case (Figure 2d). The updated horizontal permeability 
in Layer #1 (Figure 2h) is higher than that of the initial 
case (Figure 2e), and the high/low streak characteristic 
featured in the true case (Figure 2b) is captured in the 
updated models.

Note that the values in each layer are truncated 
according to the corresponding upper and lower limits 
of true values. Because of truncation, the overshooting 
problem of permeability and porosity is not exhibited 
in these figures; however, it does occur in the history 
matching process. This has also been reported by other 
researchers (Gu and Oliver, 2005; Naevdal et al., 2005; 
Dong et al., 2006; Gao et al., 2006; Skjervheim et al., 
2007). The overshooting is caused mainly by the strong 
non-linearity inherent in multiphase flow simulations. It is 
necessary to perform further investigation on this issue in 
the future.

Prior to the history matching, the initial ensembles are 
used in the simulation to model and evaluate reservoir 
performance of 16.5 years in order to investigate the 
uncertainty involved in the initial ensemble members. 
The cumulative oil and water production for the whole 
field is shown in Figure 4. Data for both the history 
matching period (first 8 years) and subsequent 8.5 years of 
prediction are presented. In all these figures, the red lines 
denote the reference case, while the grey lines represent 
results from different ensemble members. As shown in 
Figure 4, field cumulative water production generated 
from initial models are much higher than that of the 
reference case. However, field cumulative oil production 
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is well matched. This is due to the fact that OPRs are main 
constraint for all producers, and the targeted OPRs can 
normally be met in the production period.

The cumulative oil and water production for the whole 
field generated using the updated reservoir models in 
Scenario #1 are also presented in Figure 4 for comparison. 
It can be seen that the uncertainty range of the predicted 

cumulative oil production (Figure 4c) using updated 
models is smaller than that of initial ones (Figure 4a). The 
cumulative water production predictions generated using 
the updated models (Figure 4d) are much closer to the 
reference case than that of the initial models (Figure 4b). 
In addition, the reference production line locates near the 
center of the forecasted performance using the updated 

(a) Cumulative Oil (Initial) (b) Cumulative Water (Initial)

(c) Cumulative Oil (Updated) (d) Cumulative Water (Updated)

Figure 4
Initial and Updated Field Cumulative Production in Scenario #1. The Red Line Denotes the Reference Case

model. This indicates that the updated models provide 
a reasonable smaller uncertainty range of the forecasted 
cumulative water production. 

On a single well scale, the BHP, WC and GOR of 
Well Pro-11 using the initial and updated reservoir 
models in Scenario #1 are shown in Figure 5. Note that 
all these values are generated by conducting reservoir 
simulation from time zero using the updated reservoir 
models. Compared to the production results generated 
using the initial ensembles, the updated models provides 
better history matching and prediction results. The 
reference case, denoted by red lines, located in the middle 
of the space that is spread by the production curves 
generated using the updated models, indicating that the 
updated models generate an unbiased estimation of the 

petrophysical properties of the reservoir.

5.2  Scenario #2
In this scenario, attempts have been made to use the 
ensemble-based history matching technique to estimate 
three-phase relative permeability data. Only relative 
permeability data are tuned, while all other petrophysical 
data are assumed to be known without uncertainty. 
Consequently, the initial models are only different from 
each other in terms of relative permeability curves.

The endpoints are assumed to be known, so only four 
shape factors of relative permeability are tuned. Relative 
permeability curves are initialized by assigning random 
numbers to the shape factors. The upper and lower 
boundaries of shape factors are listed in Table 4. The mean 
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and updated value of the initial relative permeability curves are 
shown in Figures 3c and d, respectively. Considering that only 
four shape factors need to be tuned, a small ensemble size of 
50 is used in the history matching process. For the oil-water 
relative permeabilities, the updated relative permeability curve 
of oil is higher than the reference one, while the water relative 
permeability curve is slightly lower than the reference curve. 

The mismatch mainly occurs at high water saturation zones, 
which have not appeared in the first 8 years of production. As for 
the oil-gas relative permeabilities, the gas relative permeability 
curve is estimated with good accuracy, whereas the relative 
permeability curve of oil is higher than the reference one. The 
mismatch mainly occurs at high gas saturation zones, whose 
information has also not been revealed in the production history.

(a) Bottomhole Pressure (Initial) (b) Bottomhole Pressure (Updated)

(c) Water-Cut (Initial) (d) Water-Cut (Updated)

(e) GOR (Initial) (f) GOR (Updated)

Figure 5
Initial and Updated Bottom Hole Pressure, Water Cut and Gas-Oil Ratio of Well Pro-11 in Scenario #1. The Red 
Line Denotes the Reference Case
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Table 4
Boundaries of Shape Factors of the Initial Relative 
Permeability

Shape 
parameter

Reference
value

Upper 
boundary

Lower 
boundary

bo 2.5 1.0 6.0
bw 4.0 1.0 6.0
bog 3.1 1.0 6.0
bg 6.0 3.0 8.0

To test the uncertainty involved in the 50 initial ensemble 
members, simulation is first conducted with the initial 
ensemble members, while the generated cumulative oil 
and water production are presented in Figures 6a and b, 
respectively. It is interesting to find out that the predicted 
oil and water production are close to even distribution. 
This may be ascribed to the fact that shape factors of 
relative permeability are initialized using random numbers 
with even distribution. Furthermore, a huge uncertainty 
involved in the initial ensemble is clearly demonstrated by 
the widespread water production forecast shown in Figure 6b. 

The reservoir models are updated by history matching 
the production data collected for the first 8 years. After 
history matching, the updated reservoir models are used 
to predicate the reservoir performance in the subsequent 
8.5 years. The cumulative oil and water production for the 

whole field generated using the updated reservoir models 
in Scenario #2 are shown in Figures 6c and d, respectively. 
Compared to the results generated by the initial ensemble 
members, the updated models provide a much better 
prediction of reservoir performance. It can be seen that the 
predicted water production rate using the updated models 
are close to the true case, and the uncertainty range is 
much smaller than that resulting from the initial ensemble 
members. This indicates that a good estimation of relative 
permeability is obtained via history matching. 

Figure 7 depicts the relationship between the estimated 
shape parameters and time index. As time index increases, 
shape factor changes gradually towards its corresponding 
true values, which is shown as a horizontal line in each 
individual case. In addition, the deviation of each shape 
factor, shown as error bars in Figure 7, is reduced as 
time index increases. At end of the history matching 
process, the estimated shape factors are all close to their 
corresponding true values. It should be note that this 
result is obtained when a high uncertainty range is set for 
the shape factors, and better estimation results would be 
expected if a lower range of uncertainty was given.

5.3  Scenario #3
In Scenario #1, demonstration has been made to estimate 
the local petrophysical properties such as porosity and 

(a) Cumulative Oil(Initial) (b) Cumulative Water (Initial)

(c) Cumulative Oil (Updated) (d) Cumulative Water (Updated)
Figure 6
Initial and Updated Field Cumulative Production in Scenario #2. The Red Line Denotes the Reference Case
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absolute permeability by using the ensemble-based history 
matching technique. In Scenario #2, relative permeability, 
a global petrophysical property, has been estimated with 
satisfactory results. Subsequently, in Scenario #3, attempts 
will be made to simultaneously estimate the global and 
local petrophysical properties in the PUNQ-S3 reservoir. 
The initial porosity and permeability fields are the same 
as those used in Scenario #1, while relative permeability 

curves are initialized using the same boundary conditions 
as those used in Scenario #2. 

The cumulative oil and water production generated using 
80 initial ensemble members are shown in Figures 8a and 
b, respectively. Compared to the initial case in Scenario #1 
and #2, the uncertainty range of Scenario #3 is the largest, 
this is because more unknown parameters are involved 
in Scenario #3. The cumulative oil and water production 
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The Estimated Shape Parameters from Scenario #2, (a) bo, (b) bw, (c) bg, and (d) bog Versus Time Index, 
Horizontal Lines in Each Plot Show the True Values, Error Bars Denote the Estimated Values Plus and Minus 
Standard Deviation

generated using 80 updated ensemble members are shown 
in Figures 8c and d, respectively. For the cumulative oil 
production, the updated models generate much better 
predicting results compared to that of the initial model. The 
oil production has been well matched for the first 8 years, 
and subsequently the predicted OPR is very close to that 
of the reference case. As for cumulative water production, 
the water breakthrough time is improved compared to that 
of initial case (Figure 8b). However, many of the updated 
ensemble members predict a higher water production than 
that of the reference case during the predicting period of 8.5 

years. This is attributed to the biased parameter estimation 
results as discussed subsequently.

The mean value of the updated porosity, horizontal 
permeability and vertical permeability fields of Layer 
#1 from Scenario #3 are shown in Figures 2j, 2k, and 
2l, respectively. It can be seen from these figures that 
the updated values are much closer to the true ones 
compared to the initial values shown in Figures 2d, 2e, 
and 2f, respectively. The high permeability and porosity 
streaks are well captured in the updated models. The 
estimated permeability fields, nevertheless, are in 
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general lower than those of the reference case. This is 
mainly due to the fact that both absolute permeability 

and relative permeability are controlling the mobility 
of the fluids. The product of these two properties 

(a) Cumulative Oil (Initial) (b) Cumulative Water (Initial)

(c) Cumulative Oil (Updated) (d) Cumulative Water (Updated)
Figure 8
Initial and Updated Field Cumulative Production in Scenario #3, the Red Line Denotes the Reference Case

other than the individual one is used in the reservoir 
simulation process. For example, in order to achieve 
a high OPR, either the absolute permeability or 
relative permeability to oil can be increased. As shown 
subsequently, the estimated relative permeability to 
oil is greatly increased, leading to the estimated low 
permeability values.

The initial and updated relative permeability curves 
are shown in Figures 3e and f, respectively. For the oil/
water relative permeabilities, it is clearly shown that 
relative permeability to oil and water are not matched. 
The estimated water relative permeability is much lower 
than the reference and initial case. The reason for the 
downward tuning of the water relative permeability in the 
history matching is to delay the early water breakthrough 
in initial ensemble members, as shown in Figure 8b. As 
for oil, a much higher estimation of relative permeability 
to oil is reached at the end of history matching. This is 
due to the overshooting problem of the EnKF method as 
well as simultaneously tuning the absolute and relative 
permeabilities. In the updating process, the estimated 

bo of many ensemble members fall below the preset 
lower boundary; consequently, the ultimate mean value 
of bo is very low, resulting in high estimated oil relative 
permeability values. For the gas/oil relative permeabilities, 
the estimated shape factors are not changed much 
compared to their initial values.

From the above discussion on history matching, 
performance prediction and parameter estimation, it 
is found that simultaneous adjustment of absolute and 
relative permeabilities may lead to erroneous estimation 
of relative permeability; however, the updated models 
provide good history matching and production prediction 
results. This is due to the fact that the history matching 
solution is generally non-unique (Oliver et al., 2008; 
WANG et al., 2010).

5.4  Scenario #4
To further investigate the feasible conditions of accurately 
estimate relative permeability, Scenario #4 is constructed 
to update porosity and relative permeability simultaneously 
with known absolute permeability. The shape factors 
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of initial relative permeability are generated using the 
boundary data listed in Table 4. The endpoints are assumed 
to be known. The initial porosity fields are the same as 
that of the initial models in Scenario #1. The permeability 
fields are assumed to be known. The ensemble size is 80, 
which is the same as that in Scenarios #1 and #3.

To examine the uncertainty of the initial ensemble 
members, simulation of 16.5 years using 80 initial 
models has been conducted. The cumulative oil and water 
production obtained by initial ensemble models are shown 
in Figures 9a and b, respectively. Similar to Scenarios #2 
and #3, when relative permeability curves are tuned in 
history matching, a much wider range of cumulative water 
production prediction has been generated. This means 
that relative permeability data have a profound impact on 
the production prediction results. After history matching, 
the cumulative oil and water production generated by the 
updated ensemble models are shown in Figures 9c and d, 
respectively. Compared to the initial case, the uncertainty 
range of reservoir performance of the updated case is 
much smaller. Both the true oil and water production are 

preserved in the updated models, though the mean value 
of the predicted water production is still higher than the 
true value because the estimated relative permeability to 
water is high (See Figure 3g).

For relative permeability estimation results, the initial 
and updated relative permeability curves are presented 
in Figures 3g and h, respectively. Compared to the 
estimation results in Scenario #3 (see Figures 3e and f), the 
overshooting of bo does not occur, while a good estimation 
of relative permeability to oil is achieved after history 
matching. Relative permeability to water does not change 
much compared to its initial one. For the gas-oil relative 
permeabilities, the estimated gas relative permeability is 
improved slightly after the history matching. As for the oil 
relative permeability, there still exists a mismatch between 
the updated oil relative permeability curve and the true one. 
Mismatch mainly appears at high gas saturation zones, due 
to the fact that the first eight years of production mainly 
reveals little information about relative permeabilities in 
high gas saturation ranges. The mean value of updated 
porosity fields can be found elsewhere (LI, 2010).

(a) Cumulative Oil (Initial) (b) Cumulative Water (Initial)

(c) Cumulative Oil (Updated) (d) Cumulative Water (Updated)

Figure 9
Initial and Updated Field Cumulative Production in Scenario #4, the Red Line Denotes the Reference Case
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5.5  Comparison with PUNQ-S3 Results in the 
Literature
The PUNQ-S3 model is built to test the ability of different 
methods in terms of history matching and uncertainty 
qualification. Many research groups have published their 
results, among which Floris et al. (2001) summarized 
some of the results as listed in Table 5. To minimize the 
effect caused by using different simulators, the results are 
normalized by dividing the cumulative oil production at 
16.5 years by the corresponding reference values. 

Table 5
Test Scenarios for PUNQ-S3 Summarized by Floris et 
al. (2001) and This Study

Index Test scenarios Reference
1 TNO-1

Floris et al. 
(2001)

2 TNO-2
3 TNO-3
4 Amoco-ISO
5 Amoco-Aniso
6 Elf
7 NCC-GA
8 NCC-AG MCMC
9 IFP-STM
10 IFP-Oliver
11 NCC-Oliver
12 Scenario #1

This study13 Scenario #2
14 Scenario #3
15 Scenario #4

Figure 10 is the box plots accounting for the 
normalized prediction results, which are presented in 
terms of normalized “P10”, “P50” and “P90” values. 
The upper boundaries of boxes represent the normalized 
“P10” value, while the horizontal lines in boxes show 
the normalized “P50” values and the lower boundaries 
of boxes show the normalized “P90” values. Five out 
of eleven scenarios show that the estimated uncertainty 
ranges do not include the reference case. Since the first 
three scenarios are generated using homogeneous layer 
models, a much larger uncertainty range in prediction 
is obtained. All the remaining scenarios assume that the 
models are heterogeneous. Scenarios are different in 
tuning parameters, uncertainty qualification methods, 
and optimization methods and reservoir simulators that 
are used. More details of the first eleven scenarios are 
summarized by Floris et al. (2001). It can be seen that 
the uncertainty range generated using different history 
matching methods are different from each other clearly 
demonstrating that parameterization, spatial technique, 
optimization and uncertainty qualification techniques 
contribute to the final results.

The boxes filled in grey are results from four scenarios 
of this study. Compared to previous results, good production 
performance predictions have been achieved using the 

technique developed in this study. The reference case was 
located in the uncertainty ranges of results generated from 
all four data assimilation scenarios. It is found from Scenario 
#1 that, when relative permeability data are known, a good 
production prediction is achieved and that the normalized 
“P50” value is close to 1. This means the mean value of the 
prediction is very close to the reference value. The range 
between the “P10” and “P90” values reflects a reasonable 
uncertainty range of the prediction. For Scenario #2, a higher 
prediction result is observed when relative permeability 
is tuned, though the uncertainty range of the prediction is 
comparable to that of Scenario #1. This further demonstrates 
that relative permeability curves, as global parameters, affect 
prediction results significantly. However, the uncertainty 
range of Scenario #1 and #2 is narrow. This indicates 
that, when the number of parameters is less during history 
matching, the uncertainty of its predictions tends to be 
underestimated (Celaya & Wahr, 1996). The uncertainty 
range of Scenario #3 is much larger than that of Scenarios 
#1 and #2 due to the fact that more parameters are tuned in 
Scenario #3. The predicted “P50” value of the oil production 
is almost identical to the reference value, even though 
relative permeability curves are not well matched. Scenario 
#4 generates a similar uncertainty range as that of Scenario 
#3. This may be caused by the truncation of the out-of-
boundary porosity in the updating process.

CONCLUSIONS
The ensemble-based history matching technique has 
been successfully applied to the well-known standard 
PUNQ-S3 reservoir model for estimating the multiple 
petrophysical parameters. Four different testing scenarios, 
with different combination of tuning petrophysical 
parameters, have been examined. It is found that the 
ensemble-based technique is capable of estimating 
petrophysical parameters by conditioning the reservoir 
geological models to production history. Compared to 
the results presented in the literature, good production 
performance predictions have been achieved by using the 
technique developed in this study. The reference case is 
located in the uncertainty ranges generated from all four 
data assimilation scenarios in this study. 

The selection of parameters will affect the parameter 
estimation and production prediction results. It is shown 
from this study that relative permeabilities have profound 
impacts on the history matching and prediction results. 
Relative permeability can be estimated with good 
accuracy when absolute permeability fields are known. 
Parameters can be estimated with good accuracy if 
the types of parameter are less, though the uncertainty 
range of the prediction is underestimated. Also, a good 
history matching together with a large range of prediction 
uncertainty is observed when relative permeability 
is tuned simultaneously with porosity and absolute 
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permeability, though accuracy of the estimated relative 
permeability is poor. In some cases, history-matched 
models may not provide good parameter estimation. 
This further illustrates the non-uniqueness of the history 
matching. The overshooting of the EnKF method may 
cause the updated model to be physically unrealistic, and 
further investigation is necessary. 
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