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Abstract
By using a non-linear 3-D elastic waves real-time 
expert system, the new theory of “Non-linear Real-Time 
Expert Seismology” is investigated, for the exploration 
of the on-shore and off-shore petroleum and gas 
reserves all over the world. Such a highly innovative 
and groundbreaking technology is working under Real 
Time Logic for searching the on-shore and off-shore 
hydrocarbon reserves developed on the continental 
crust and in deeper water ranging from 300 to 3000 
m, or even deeper. Consequently, this real-time expert 
system, will be the best device for the exploration of 
the continental margin areas (shelf, slope and rise) and 
the very deep waters, as well. The proposed modern 
technology can be used at any depth of seas and oceans 
all over the world and for any depth in the subsurface 
of existing oil reserves. 

Beyond the above, the various mechanical properties 
of rock regulating the wave propagation phenomenon 
appear as spatially varying coefficients in a system of 
time-dependent hyperbolic partial differential equations. 
The propagation of the seismic waves through the earth 
subsurface is described by the wave equation, which 
is then reduced to a Helmholz differential equation. 
Furthermore, the Helmholtz differential equation is 
numerically evaluated by using the Singular Integral 
Operators Method (S.I.O.M.). Several properties are 
further analyzed and investigated for the wave equation.

F ina l ly,  an  app l i ca t ion  i s  p roposed  fo r  the 
determination of the seismic field radiated from a 
pulsating sphere into an infinite homogeneous medium. 
Thus, by using the S.I.O.M., then the acoustic pressure 
radiated from the above pulsating sphere is determined.
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INTRODUCTION
The new method “Non-linear Real-Time Expert 
Seismology” is the main and best tool which can be used 
by the petroleum and gas industry to map hydrocarbon 
deposits in the Earth’s upper crust. Furthermore, 
environmental and civil engineers can use variants of 
the above very modern technique to locate bedrock, 
acquifers, and other near-surface features and academic 
geophysicists can extend it to a tool for imaging the 
lower crust and mantle. The new technology of “Non-
linear Real-Time Expert Seismology” was proposed and 
investigated by Ladopoulos (2011b, 2011c, 2012a, 2012b, 
2012c, 2012d), as an extension on his methods on non-
linear singular integral equations in fluid mechanics, 
potential flows, hydraulics, aerodynamics, structural 
analysis and solid mechanics (Ladopoulos, 1991, 1994, 
1995a, 1995b, 1997, 2000a, 2000b, 2003, 2005, 2011a).

In general, seismic wave propagation, the physical 
phenomenon underlying the “Non-linear Real-Time 
Expert Seismology” as well as other types of seismology, 
is modeled with reasonable accuracy as small-amplitude 
displacement of a continuum, using various specializations 
and generalizations of linear elastodynamics. In such 
models, the various mechanical properties of rock 
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regulating the wave propagation phenomenon appear 
as spatially varying coefficients in a system of time-
dependent hyperbolic partial differential equations. 

The “Non-linear Real-Time Expert Seismology” is 
applied by extracting maps of the Earth’s sedimentary 
crust from transient near-surface recording of echoes, 
stimulated by explosions or other controlled sound 
sources positioned near the surface. Reasonably accurate 
models of seismic energy propagation take the form of 
hyperbolic systems of partial differential equations, in 
which the coefficients represent the spatial distribution of 
various mechanical characteristics of rock, like density, 
stiffness, etc. The exploration geophysics community has 
developed various methods for estimating Earth structure 
from seismic data, however the very modern method 
“Non-linear Real-Time Expert Seismology” seems to 
be the best tool for on-shore and off-shore oil and gas 
reserves exploration for very deep drillings ranging up to 
20,000 or 30,000 m. 

During the past years several variants of integral 
equations methods were used for the solution of 
elastodynamic and acoustic problems. As a beginning 
approximately at the end of sixty’s Shenk (1968) stated 
that the integral equation for potential mathematically 
failed to yield unique solutions to the exterior acoustic 
problem and proposed a method in which an over 
determined system of equations at some characteristic 
frequencies was formed by combining the surface 
Helmholtz equation with the corresponding interior 
Helmholtz equation. It was analytically proved, that the 
system of equations to provide a unique solution at the 
same characteristic frequencies, to some extent. However, 
the above method might fail to produce unique solutions, 
when the interior points used in the collocation of the 
Boundary Integral Equations were located on a nodal 
surface of an interior standing wave.

Beyond the above, at the beginning of seventy’s 
Burton and Miller (1971) proposed a combination of the 
surface Helmholtz integral equation for potential and the 
integral equation for the normal derivative of potential at 
the surface, to circumvent the problem of nonuniqueness 
at characteristic frequencies. Their method was called 
Composite Helmholtz Integral Equation. Some time 
later, Meyer, Bell, Zinn and Stallybrass (1978) and Terai 
(1980), developed regularization techniques for planar 
elements for the calculation of sound fields around three 
dimensional objects by integral equation methods. 

On the contrary, Reut (1985), investigated further 
the Composite Helmhholtz Integral Equation Method by 
introducing the hypersingular integrals. Also, in the above 
numerical method, the accuracy of the integrations affects 
the results and the conventional Gauss quadrature can not 
be used directly. 

The basic idea by using the gradients of  the 
fundamental solution to the Helmholtz differential 

equation for velocity potential, as vector test functions to 
write the weak form of the original Helmholtz differential 
equation for potential and so directly to derive a non 
hypersingular boundary integral equations for velocity 
potential gradients, was introduced by Okada, Rajiyah and 
Atluri (1989) and Okada and Atluri (1994). They used the 
displacement and velocity gradients to directly establish 
the numerically tractable displacement and displacement 
gradient boundary integral equations in elasto-plastic 
solid problems and traction boundary integral equations. 
Beyond the above, Chien, Rajiyah and Atluri (1990), 
employed some known identities of the fundamental 
solution from the associated interior Laplace problem, to 
regularize the hypersingular integrals.  

Also, Wu, Seybert and Wan (1991), proposed the 
regularized normal derivative equation, to be converged 
in the Cauchy principal value sense. The computation 
of tangential derivatives was required everywhere on 
the boundary. Moreover, Hwang (1997), reduced the 
singularity of the Helmholtz integral equation by using 
some identities from the associated Laplace equation. On 
the other hand, the value of the equipotential inside the 
domain must be computed, because the source distribution 
for the equipotential surface from the potential theory was 
used to regularize the weak singularities.

The identities of the fundamental solution of the 
Laplace problem was also used by Yang (2000), to 
efficiently solve the problem of acoustic scattering from a 
rigid body. Furthermore, Yan, Hung and Zheng (2003), in 
order to solve the intensive computation of double surface 
integral, employed the concept of a discretized operator 
matrix to replace the evaluation of double surface integral 
with the evaluation of two discretized operator matrices. 

On the contrary, Han and Atluri (2003) used further 
traction boundary integral equations for the solution 
of the Helmholtz equation. Also, recently was used by 
Atluri, Han and Shen (2003) the meshless method, as an 
alternative numerical method, to eliminate the drawbacks 
in the Finite Element Method and the Boundary Element 
Method.    

In the present investigation, the Singular Integral 
Operators Method (S.I.O.M.) will be used for the 
solution of elastodynamic problems by using the 
Helmholtz differential equation. In this derivation the 
gradients of the fundamental solution to the Helmholtz 
differential equation for the velocity potential, will be 
applied. Furthermore, several basic identities governing 
the fundamental solution to the Helmholtz differential 
equation for the velocity potential are analyzed and 
investigated.

Consequently, by using the Singular Integral Operators 
Method (S.I.O.M.), then the acoustic velocity potential 
will be computed. Beyond the above, some properties 
of the wave equation, which is a Helmholtz differential 
equation, are proposed and investigated. Also, some basic 
properties of the fundamental solution will be derived.
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F ina l ly,  an  app l i ca t ion  i s  p roposed  fo r  the 
determination of the seismic field radiated from a 
pulsating sphere into an infinite homogeneous medium. 
Thus, by using the Singular Integral Operators Method 
(SIOM), then the acoustic pressure radiated from the 
above pulsating sphere will be computed. This is very 
important in petroleum reservoir engineering in order the 
size of the reservoir to be evaluated.

Hence, the S.I.O.M. which was used with big success 
for the solution of several engineering problems of fluid 
mechanics, hydraulics, potential flows, aerodynamics, 
solid mechanics and structural analysis, are further 
extended in the present investigation for the solution 
of hydrocarbon reservoir engineering problems in 
elastodynamics. 

1.  NON-LINEAR REAL-TIME EXPERT 
SEISMOLOGY
As a general rule, off-shore operations consist of 90% 
of all data collected worldwide for petroleum and gas 
reserves exploration. Thus, the depth of the drillings are 
usually up to 6000 m, but sometimes in order to find big 
petroleum and gas reserves they may extend to 10,000 
m or even to 15,000 m or 20,000 m. Furthermore, big 
oil companies and research organisations by studying 
geological surveys all over the world indicate that 
oil reserves do not necessarily end at the edge of 
the continental shelf. Consequently, there is serious 
expectation that main resources will be found in areas of 
thick sedimentary sequences developed on the continental 
crust. Hence, there are good possibilities for finding off-
shore petroleum and gas reserves in deeper waters, too, 
ranging up to 2500 m to 3000 m, or even more. 

Furthermore, the behavior of a reservoir and of the 
wells drilled to produce it, depends not only on the 
properties of the petroleum and gas, but also on a series 
of factors that may be termed as the “properties of the 
environment”. Among these factors are such items as 
capillary-pressure effects, the reaction of rock when 
subjected to high stress, pressure and temperature 
gradients at the shallower levels in the Earth’s crust and 
the influences of the compressibility as pressure are 
reduced by fluid withdrawals.

Sett ing the stage for  al l  s tudies of  reservoir 
performance is the physical nature of the reservoir 
itself, its location, structure, lithology, internal geometry 
and extent. There are four basic conditions that must 
be satisfied in order a geological formation, or a part 
thereof, should form a suitable reservoir, for example for 
the accumulation of hydrocarbons. These are porosity, 
permeability, seal and closure. The first defines the pore 
space in the rock-space in which the oil and gas may 
collect. Permeability is the attribute of the rock that 

permits the passage of fluid through it. Generally, it is 
a measure of the degree interconnectedness, of the pore 
space, but some reservoir (e.g. in the massive limestone 
deposits, or in igneous intrusions) depends for fluid flow 
on a network of fractures within the rock.

Moreover, the seal is the “cap” of the reservoir and 
prevents the oil and gas from leaking away. On the other 
hand, closure is a measure of the vertical extent of the 
sealed trap or, in the case of hydrocarbon accumulation 
bounded below by a moving body of water, of the “height” 
of the sealed trap where that height is measured along a 
line perpendicular to the oil-water contact. 

Three general categories of resources can be mentioned 
for off-shore reserves: structural traps, stratigraphic traps 
and combination traps. Sometimes there was no trap along 
the path of the water/hydrocarbon mixture as it moved 
through the formation on its journey from the source 
beds. Sometimes those traps that were present were 
insufficient in volume to hold all of the hydrocarbons in 
the percolating stream and sometimes the seal of the trap 
was not perfect. In each of these circumstances, some 
of the hydrocarbons moved eventually into near-surface 
locations where most of the light ends evaporated over the 
years, leaving behind a heavy tarlike residue, so thick that 
it would no longer flow at ambient temperatures.  

Elastic waves are sound waves, usually three-
dimensional which may be transmitted through matter 
in any phase-solid, liquid, or gas. Generally, any body 
vibrating in air gives rise to such waves, as it alternately 
compresses and rarefies the air adjacent to its surfaces. 
Also, a body vibrating in a liquid, or in contact with a 
solid, likewise generates similar longitudinal waves. 
Of course the frequency of the waves is the same as the 
frequency of the vibrating body that produces them. So, 
there are two types of elastic waves produced: a) P-waves, 
which are primary or “compressional” waves, and b) 
S-waves, or shear waves.

Furthermore, wavelength of the wave is the distance 
between two successive maxima (or between any two 
successive points in the same phase) and is denoted by l. 
Since the waveform, travelling with constant velocity u, 
advances a distance of one wavelength in a time interval 
of one period, then it follows that the velocity of sound 
waves u is given by the following relation:

   u = l ν  (1)

in which  ν denotes the frequency.
As it is obvious, the velocity u differs when the sound 

waves are travelling through solid, liquid, or gas. In a 
solid the elastic waves are moving faster than in a liquid 
and the air, and in a liquid faster than in the air. Thus, 
if somebody is searching for example for off-shore oil 
resources over the sea, by transmitting sound waves, then 
there will be a difference in the velocity of the waves in 
the sea, the solid bottom and in a potential reservoir.
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Figure 1
Elastic Waves Method for the Exploration of Oil 
Reserves

In order to better explain the new technology, consider 
the example of Figure 1. In this example consider that 
in the bottom of the sea there is a potential petroleum 
reservoir. In this case, the speed of the elastic waves 
in the air (uair), will be different from the speed in the 
water (uwater),  and different from the speed in the solid 
bottom (usolid) and different from the speed in the potential 
reservoir (uoil), while the frequency of the elastic waves 
remaining the same when transmitted through every 
different matter.

Figure 2
Real-Time Expert Seismology

Consequently, in the present research a real-time non-linear 
3-D plane-polarized elastic waves expert system is proposed 

in order to explore the on-shore and off-shore petroleum 
and gas resources, according to the new theory of “Real-
Time Expert Seismology”, in contrast to the old theory of 
“Reflection Seismology” (Aki & Richards, 1980, Hale, 1984, 
Thomsen, 1988, 1999, Dellinger, 1993, Harrison & Stewart, 
1993, Tsvankin & Thomsen, 1994, Alkhalifah & Tsvankin, 
1995, Gaiser, 1997, Schmelzbach, Green & Horstmeyer, 2005, 
Schmelzbach, Horstmeyer & Juhlin, 2007). This new Sound 
Waves Technology will work under Real Time Logic for 
searching off-shore oil reserves developed on the continental 
crust and on deeper waters ranging from 300 m to 2500 m or 
3000 m, or even much deeper (Figure 2). On the contrary, there 
are many deeper water prospects around the seas all over the 
world, but because of the paucity of the available information 
it is not possible at present to quantify the amounts that may be 
recoverable from them. 

Thus, the proposed real-time elastic waves expert 
system will be the best device for the exploration of 
the continental margin areas (shelf, slope and rise) and 
the very deep waters ranging of more than 2500 ÷ 3000 
m, too. Through the very modern technology of “Non-
linear Real-Time Expert Seismology”, will be effected the 
exploration of a significant part of on-shore and off-shore 
petroleum and gas reserves very fast and by a low cost.

Figure 3
Law of Reflection

According to the proposed very modern technology of “Non-
linear Real-Time Expert Seismology” the average velocity of the 
sound waves is calculated by providing important information 
about the composition of the solids through of which passed 
the sound waves. For example the velocity of the sound waves 
through the air is 331 m/sec, through liquid 1500 m/sec and 
through sedimentary rock 2000 to 5000 m/sec. Furthermore, 
according to the law of Reflection the angle of reflection 
equals the angle of incidence (Figure 3). Then according to 
the new method the arrival times of the seismic waves are 
analyzed. After the sensor measures the precise arrival time 
of the wave, then the velocity of the wave can be calculated 
by using the method as following.

The travel time T of the seismic waves is given by the relation:

  
v

xd
T

2/122

42 
   (2)



5 Copyright © Canadian Research & Development Center of Sciences and Cultures

E.G. Ladopoulos (2012). 
Advances in Petroleum Exploration and Development, 4(1), 1-12

Where d denotes the depth, x the distance between 
source of wave and the geophone or hydrophone detector 
and v is the average speed.

 Beyond the above, from equation (2) follows equation (3):

  
2

22
2 4

v
xdT 

   (3)

Also, the normal incident time To   is given by the formula:

  
v
dTo

2
   (4)

From equations (3) and (4) follows:

  2

2
22

v
xTT o    (5)

Moreover, from equation (5) follows that the travel time 
curve for a constant velocity horizontal layer model is a 
hyperbola whose apex is at the zero-offset travel time To:

  1
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2

2

2


vT

x
T
T

oo

  (6)

Finally from equation (5) the mean velocity is equal to:

  22
oTT

xv


  
 (7)

Hence, a real time expert system is proposed and the 
apparatus permitted excitation of any combination of 
elements and reception of any other, visual analysis of 
the responses, and transfer of the signals to the PC for 
post processing. The sequencing of transducer excitation, 
digitiser configuration and subsequent data analysis was 
performed by a rule based Real-Time Expert System. 
Then from the information gathered, the Expert System 
applies knowledge via a series of software coded rules and 
provides any one of the following conditions: speed in the 
water (uwater), speed in the solid bottom (usolid) and speed in 
the potential reservoir (uoil).

Real-time logic (RTL) is a reasoning system for 
real-time properties of computer based systems. RTL’s 
computational model consists of events, actions, causality 
relations, and timing constraint (Jahanian & Mok, 1985, 
1986; Emnis et al., 1986; Fritz, Haase, & Kalcher, 1988; 
Haase, 1990). This model is expressed in a first order 
logic describing the system properties as well as the 
systems dependency on external events. The Real-Time 
Logic system introduces time to the first logic formulas 
with an event occurrence function, which assign time 
values to event occurrences. Beyond the above, real-
time computing in common practice is characterized by 
two major criteria: deterministic and fast response to 
external stimulation, and both human and sensor and actor 

based interaction with the external world. Real-time is an 
external requirement for a peace of software; it is not a 
programming technology.

In general, Real-Time Logic uses three types of constraints:
     (1)             Action constants may be primitive or composite. 

In a composite constant, precedence is imposed 
by the event-action model using sequential or 
parallel relations between actions.

(2)  Event constants are divided into three cases. 
Start/stop events describe the initiation/
termination of an action or subaction. Transition 
events are those which make a change in state 
attributes. This means, that a transition event 
changes an assertion about the state of the real-
time system or its environment. The third class, 
which are the external events, includes those that 
can be impact the system behavior, but cannot be 
caused by the system.

(3)  Integers assigned by the accurance function 
provide time values, and also denote the number 
of an event occurance in a sequence.

Furthermore, the Real-Time Logic System introduces 
time to the first order logic formulas with an event 
occurance function denoted by e. The mechanism to achieve 
a timing property of a system is the deduction resolution.

Consider further the following example: Upon 
pressing button ≠ 20, action TEST is extended within 
300 time units. Dusting each execution of this action, the 
information is sampled and subsequently transmitted to 
the display panel. Also, the computation time of action 
TEST is 100 time units.

This example can be further translated into the 
following two formulas:

 x : e ( Ω button 20, x )  e (  TEST, x )  
e (  TEST, x )  e ( Ω button 20, x ) + 300 

 y : e (  TEST, y) + 100  e (  TEST, y ) 

2.  ELASTODYNAMICS BY NON-LINEAR 
SEISMIC WAVE MOTION 
Generally, seismic wavelengths run in the tens of meters, 
so it is reasonable to presume that the mechanical 
properties of rocks responsible for seismic wave motion 
might be locally homogeneous on length scales of 
millimeters or less, which means that the Earth might be 
modeled as a mechanical continuum. Except possibly for 
a few meters around the source location, the wavefield 
produced in seismic reflection experiments does not 
appear to result in extended damage or deformation, so 
the waves are entirely transient. These considerations 
suggest a non-linear wave motion as a mechanical model 
in elastodynamics. 
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The equations of elastodynamics in homogeneous 
media are given as following:

 b
t
v



    (8)  

 



 )(

2
1 TvvC

t
  (9)

In which  v  denotes the particle velocity field, σ the stress 
tensor, b a body force density, γ a defect in the elastic constitutive 
law, ρ  the mass density, t the time and C the Hooke’s tensor.

Moreover, the right hand sides b and γ provide a variety 
of representations for external energy input to the system.

The new technique for on-shore and off-shore oil 
and gas reserves exploration “Non-linear Real-Time 
Expert Seismology” uses transient energy sources and 
produce transient wave fields. Thus, the appropriate initial 
conditions for the system of equations (8) and (9)  are:

 v = 0,  σ = 0,  for: t << 0  (10)

For isotropic elasticity, the Hooke’s tensor has only 
two independent parameters, the compressional and shear 
wave speeds pc  and sc . It is instructive to examine direct 
measurements of these quantities, made in a borehole. 
Thus, there are two types of elastic waves produced: a) 
P-waves, which are primary or “compressional” waves, 
and  b) S-waves, or shear waves.

In the current investigation, the seismic problem 
will be not developed in the generalized context of the 
elastodynamic system equations (8) and (9). Instead, our 
research will be limited to a special case of seismology. 
Hence, in this present model, it is supposed that the 
material does not support shear stress. The stress tensor 
becomes scalar, σ = −pI, p being the pressure, and only 
one significant component, the bulk modulus κ, is left in 
the Hooke tensor. 

Then, the system (8) and (9) reduces to:

  bp
t
v



   (11)

  h
t
p



 v


1   (12)

Where the energy source is  represented as a 
constitutive law defect  h.

The proposed model predicts wave motion c with 
spatially varying wave speed:

  



c   (13)

With  ρ the mass density and  κ  the bulk modulus.

Also ,  i t  i s  very  convenient  to  represent  the 
elastodynamics in terms of the acoustic velocity potential 





t

dssxptxu ),(),(  ,  which results to:

t
up



  

and:    u

1v   (14)

By using equations (13) and (14), then the acoustic 
system equations (11) and (12) reduces to the wave 
equation, because of the propagation of seismic waves 
through an unbounded homogeneous solid:

 hu
t
u

c






11

2

2

2
  (15)

Beyond the above, by assuming that density ρ is 
constant and that the source (transient constitutive law 
defect h) is an isotropic point radiator located at the 
source point, then the wave equation (15) reduces to the 
following Helmholtz differential equation:

  01 2
2

2

2 

 u

t
u

c
  (16)

For time harmonic waves with a time factor tie ω− , 
then the wave equation (16) reduces to:

  022  uku   (17)

Where the wave number k is equal to:

  
c

k 
   (18)

With  ω  the angular frequency and  c  the speed of 
sound in the medium at the equilibrium state.                         

The fundamental solution of the wave equation (8) at 
any field point y due to a point sound source x, for the two 
dimensions is given by the formula:

  )(
4

),( )1(
0

* krHiu yx  

 
(19)

   )(
4

),( )1(
1

*

krkHi
r

u



 yx   (20)

In which 1i ,  )()1(
0 krH   denotes the Hankel 

function of the first kind and r is the distance between the 

field point  y and the source point x ( yx −=r ).
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Furthermore, the fundamental solution of the wave 
equation (8) for the three dimensions is given as following:

  ikre
r

u 
4
1),(* yx   (21)

   )1(
4

),( 2

*



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ikr
r

e
r

u ikr


yx   (22)

The fundamental  solut ion ),(* yxu   i s  fur ther 
governed by the wave equation:

 0),(),(),( *2*2  yxyxyx uku   (23)  

Consequently, equation (23) is referred as the Helmholtz 
potential equation governing the fundamental solution. 

Beyond the above, consider the weak form of the 
Helmholtz equation to be given by the relation:

  0)( *22  


duuku   (24)

In the solution domain Ω.
By applying further the divergence theorem once in 

(24), we obtain a symmetric weak form:

  
 

 0*2*
,,

*
, duukduudSuun iiii   (25)

In which n denotes the outward normal vector of the 
surface S.

Thus, in the symmetric weak form the function u 
and the fundamental solution u* are only required to be 
first-order differentiable. Furthermore, by applying the 
divergence theorem twice in equation (24) then one has: 

 
 

 0)( *2*
,

*
,

*
, dukuudSuundSuun iiiiii   (26)

So, equation (26) is the asymmetric weak form and 
the fundamental solution  u*  is required to be second - 
order differentiable. Moreover, u is not required to be 
differentiable in the domain Ω.  

By combining further equations (23) and (26), then we obtain:

 dSuundSuunu iiii ).,()()(),()()()( *
,

*
, yxyyyxyyx 






(27)

Which can be further written as:

  dSRudSuqu 





),()(),()()( ** yxyyxyx  (28)

Where q(y) denotes the potential gradient along the 
outward normal direction of the boundary surface:

 



 yyyyy ,)()()()( ,kk
y

un
n

uq   (29)

and the kernel function:

 



 yyxyyxyx ,),()(),(),( *

,

*
*

kk
y

un
n

uR

(30)  

By differentiating equation (28) with respect to xk , one 
obtains the integral equation for potential gradients  u,k(x) 
by the following relation:

 dS
x

RudS
x

uq
x

u

kkk
 
  











 

),()(),()()( ** yxyyxyx

(31)

3 .   F U N D A M E N TA L S O L U T I O N ' S 
MATHEMATICAL PROPERTIES 
The weak form of  equat ion (13)  governing the 
fundamental solution, can be rewritten as following:                                              

  


 xyxyx ,0),(),( *2*2 ccduku  

(32)

In which c denotes a constant, considering as the test 
function.

Equation (32) can be further written as:

  


 xyxyx ,01),(),( *2*
, duku ii

 

(33)

Furthermore, equation (33) takes the following form:


 

 


xyxyxy ,01),(),()( *2*
, dukdSun ii

 

(34)

Also, by considering an arbitrary function u(x) in Ω 
as the test function, then the weak form of equation (12) 
may be written as:

  


 xxyxyxyx ,0)(),(),(),( *2*2 duuku  

  


 xxyxyxyx ,0)(),(),(),( *2*2 duuku    (35)
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And further as:

  


 xxxyxyx ,0)()(),(),( *2*
, uduuku ii  

  (36)

Finally, equation (36) will be written as:


 

 


xxxyxxyx ,0)()(),()(),( *2* uduukdSu  


 

 


xxxyxxyx ,0)()(),()(),( *2* uduukdSu    (37)
Moreover, if x approaches the smooth boundary 

 )( x , then the first term in equation (37) can be 
written as:

)(
2
1)(),()(),(lim ** xxyxxyx 




CPV

udSudSu


  

x  

(38)

In the sense of a Cauchy Principal Value (CPV) 
integral.

For the understanding of the physical meaning of 
equations (38), (34) and (37) can be written as following: 

 



CPV

xdukdS
 

 ,02
1),(),( *2* yxyx   

(39)

 and:

 



CPV

xuduukdSu
 

 ,0)(2
1)(),()(),( *2* xxyxxyx   

 



CPV

xuduukdSu
 

 ,0)(2
1)(),()(),( *2* xxyxxyx   (40)

From equation (39) follows that only a half of the 
source function at point x is applied to the domain Ω,  
when the point x approaches a smooth boundary, Ω∂∈x .

Beyond the above, consider another weak form of 
equation (37) by supposing the vector functions to be the 
gradients of an arbitrary function u(y) in Ω, chosen in 
such a way that they have constant values: 

)()( ,, xy kk uu = ,     for  k=1,2,3                (41)

Consequently, the weak form of equation (37) 
can be written as:      

  0)()(),(),( ,,
*2*

,  xyyxyx kkii uduuku 


 

  (42)
By applying further the divergence theorem, then 

equation (42) takes the form:     

 



 

 0)()(),()(),( ,,
*2

,
* xxyxxyx kkk uduukdSu  

      (43)

Also, the following property exists:

 

 

 
 


 

dSuundSuun iikkii ),()()(),()()( *
,,

*
,, yxxyyxxy

0),()(),()( *
,,

*
,   

 

dSuudSuu ikikii yxxyxx   (44)

By adding equations (43) and (44) then one obtains:

 

 
 

 0)()(),()(),( ,,
*2

,
* xxyxxyx kkk uduukdSu  

 
 


 

dSuundSuun iikkii ),()()(),()()( *
,,

*
,, yxxyyxxy  

 
 

 0)()(),()(),( ,,
*2

,
* xxyxxyx kkk uduukdSu  

 
 


 

dSuundSuun iikkii ),()()(),()()( *
,,

*
,, yxxyyxxy

  

 
 

 0)()(),()(),( ,,
*2

,
* xxyxxyx kkk uduukdSu  

 
 


 

dSuundSuun iikkii ),()()(),()()( *
,,

*
,, yxxyyxxy

 (45)

Which takes finally the form:

   


 0)()(),( ,,
*2 xxyx kk uduuk   

 


 

dSuuRedSuun itiktkii ),()(),()()( *
,

*
,, yxxyxxy

 


 0)()(),( ,,
*2 xxyx kk uduuk   

 


 

dSuuRedSuun itiktkii ),()(),()()( *
,

*
,, yxxyxxy  (46)

4.  REGULARIZATION OF THE SINGULAR 
INTEGRAL OPERATORS METHOD 
In the current section the regularization of the Singular 
Integral Operators Method will be considered together 
with the possibility of satisfying the SIOM in a weak form 
at   , through a generalized Petrov - Galerkin formula.

By subtracting equation (37) from equation (28), then 
one has:

  0)(),(),()()(),()( *2**  





duukdSRuudSuq xyxyxxyyxy  

  0)(),(),()()(),()( *2**  





duukdSRuudSuq xyxyxxyyxy    (47)

Thus, by using equation (40), then equation (47) can be 

applied at point x on the boundary Ω∂∈x , as following:
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  


 


xxxyxyxxyyxy ),(
2
1)(),(),()()(),()( *** udSuRdSRuudSuq

CPV

 

  


 


xxxyxyxxyyxy ),(
2
1)(),(),()()(),()( *** udSuRdSRuudSuq

CPV

   (48)

Beyond the above, the Petrov-Galerkin scheme can be 
used in order the weak form of equation (48) to be written as:

 

xy

CPV

x

yxyx

dSufdSuRdSf

dSRuudSfdSuqdSf

)()(
2
1)(),()(

),()()()(),()()(

*

**

xxxyxx

yxxyxyxyx
















 

 

 

xy

CPV

x

yxyx

dSufdSuRdSf

dSRuudSfdSuqdSf

)()(
2
1)(),()(

),()()()(),()()(

*

**

xxxyxx

yxxyxyxyx
















 

 

xy

CPV

x

yxyx

dSufdSuRdSf

dSRuudSfdSuqdSf

)()(
2
1)(),()(

),()()()(),()()(

*

**

xxxyxx

yxxyxyxyx
















 

 

xy

CPV

x

yxyx

dSufdSuRdSf

dSRuudSfdSuqdSf

)()(
2
1)(),()(

),()()()(),()()(

*

**

xxxyxx

yxxyxyxyx
















 

 (49)

In which )(xu  denotes a test function on the bound-
ary    .

Furthermore, by using equation (40), then from 
equation (49) follows:

y

CPV

xyxx dSuRdSfdSuqdSfdSuf )(),()(),()()()()(
2
1 ** yyxxyxyxxx 



  

y

CPV

xyxx dSuRdSfdSuqdSfdSuf )(),()(),()()()()(
2
1 ** yyxxyxyxxx 



    (50)

Finally, if one chooses the test function f(x) in such way 
to be identical to a function which is energy-conjugate to 
u(x), then the following Galerkin SIOM is obtained:

y

CPV

xyxx dSuRdSqdSuqdSqdSuq )(),()(ˆ),()()(ˆ)()(ˆ
2
1 ** yyxxyxyxxx 



  

y

CPV

xyxx dSuRdSqdSuqdSqdSuq )(),()(ˆ),()()(ˆ)()(ˆ
2
1 ** yyxxyxyxxx 



    (51)

Consequently, equation (51) is referred to a symmetric 
Galerkin SIOM.

5.  APPLICATION OF NON-LINEAR 
ELASTODYNAMICS BY A PULSATING SPHERE 
The previous mentioned theory will be further applied 
to the determination of the seismic field radiated from a 
pulsating sphere into an infinite homogeneous medium 
(Figure 4). 

Figure 4
Field Radiated by a Pulsating Sphere into an Infinite 
Homogeneous Medium

Thus, by using the Singular Integral Operators Method 
(S.I.O.M.) as described in the previous paragraphs, then 
the computation of the acoustic pressure radiated from the 
above pulsating sphere is determined.

Beyond the above, the analytical solution of the acous-
tic pressure for a sphere of radius a, pulsating with uni-
form radial velocity 

av , is given by Chien (1990):

  )(

0 )1(
)( arik

a

e
ika

ika
r
a

vz
rp 


   (52)

in which p(r) denotes the acoustic pressure at distance r, 
z0 is the characteristic impedance and k the wave number.

Thus, in Table 1 and Table 2, the real and imaginary 
parts of dimensionless surface acoustic pressures are 
shown with respect to the reduced frequency ka. So, 
the computational results by using the S.I.O.M. were 
compared to the analytical solutions of the same problem. 
From the above Tables it can be well seen that there is 
very small difference between the computational results 
and the analytical solutions. Finally same results are 
plotted, in Figures 5 and 6, and in three-dimensional form 
in Figures 5a and 6a.

Figure 5
Real Part of Dimensionless Surface Acoustic Pressure 
of a Pulsating
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Figure 5a
3-D Distribution of Real Part of Dimensionless Surface 
Acoustic Pressure of a Pulsating

Figure 6
Imaginary Part of Dimensionless Surface Acoustic 
Pressure of a Pulsating

Figure 6a
3-D Distribution of Imaginary Part of Dimensionless 
Surface Acoustic Pressure of a Pulsating

Table 1
The Data of the Computational Results and  Analytical 
Solutions

ka Re(p(a)/z0va)
Analytical

Re(p(a)/z0va)
S.I.O.M.

0.00 0.00 0,00
0.40 0.10 0.11
0.60 0.30 0.32
0.75 0.40 0.41
1.00 0.50 0.52
1.25 0.60 0.60
1.50 0.70 0.71
2.00 0.80 0.80
2.50 0.86 0.87
3.00 0.90 0.91
3.50 0.92 0.93
4.00 0.94 0.94
4.50 0.96 0.96
5.00 0.97 0.97
6.00 0.98 0.98
7.00 0.99 0.99
7.50 0.99 0.99

Table 2
The Data of the Computational Results and  Analytical 
Solutions

ka Im(p(a)/z0va)
Analytical

Im(p(a)/z0va)
S.I.O.M.

0.00 0.00 0,00
0.20 0.22 0.23
0.40 0.30 0.31
0.50 0.40 0.41
0.60 0.45 0.45
0.80 0.48 0.48
1.00 0.50 0.49
1.50 0.45 0.45
2.00 0.40 0.40
2.50 0.35 0.36
3.00 0.30 0.31
3.50 0.26 0.26
4.00 0.24 0.24
4.50 0.21 0.21
5.00 0.19 0.20
5.50 0.17 0.17
6.00 0.15 0.15
6.50 0.14 0.14
7.00 0.12 0.12
7.50 0.11 0.11

CONCLUSIONS
The new technology of “Non-linear Real-time Expert 
Seismology” is used for the exploration of on-shore and 
off-shore petroleum and gas reserves. This very modern 
theory can be used at any depth of seas and oceans all 
over the world ranging from 300 to 3000 m, or even 
deeper and for any depth like 20,000 m or 30,000 m in the 
subsurface of existing oil and gas reserves. 

The benefits of the new theory of “Non-linear Real-
time Expert Seismology” in comparison to the old theory 
of “Reflection Seismology” are the following:

(1) The new theory uses the special form of the 
crests of the geological anticlines of the bottom of the sea, 
in order to decide which areas of the bottom have the most 
possibilities to include petroleum.

On the other hand, the existing theory is only based 
to the best chance and do not include any theoretical and 
sophisticated model.

(2) The new theory of elastic (sound) waves is 
based on the difference of the speed of the sound waves 
which are traveling through solid, liquid, or gas. In 
a solid the elastic waves are moving faster than in a 
liquid and the air, and in a liquid faster than in the air. 
Existing theory is based on the application of Snell’s 
law and Zoeppritz equations, which are not giving good 
results, as these which we are expecting with the new 
method.

(3) The new theory is based on a Real-time Expert 
System working under Real Time Logic, that gives results 
in real time, which means every second.

Existing theory does not include real time logic.
From the above three points it can be well understood 

the evidence of the applicability of the new method of 
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“Non-linear Real-time Expert Seismology”. Also its 
novelty, as it is based mostly on a theoretical and very 
sophisticated Real-time Expert model and not to practical 
tools like the existing method.

Furthermore, in the present research, the Singular 
Integral Operators Method (S.I.O.M.) has been used for 
the solution of the elastodynamic problems used in “Non-
linear Real-time Expert Seismology” by applying the 
Helmholtz differential equation. In such a derivation the 
gradients of the fundamental solution to the Helmholtz 
differential equation for the velocity potential, has 
been used. Also, several basic identities governing 
the fundamental solution to the Helmholtz differential 
equation for the velocity potential were analyzed and 
investigated.

Thus, by using the S.I.O.M., then the acoustic velocity 
potential has be computed. Beyond the above, several 
properties of the wave equation, which is a Helmholtz 
differential equation, were proposed and investigated. 
Also, some basic properties of the fundamental solution 
have been derived.

Finally, an application was given for the determination 
of the seismic field radiated from a pulsating sphere into 
an infinite homogeneous medium. Consequently, by using 
the S.I.O.M., then the acoustic pressure radiated from 
the above pulsating sphere has be computed. This is very 
important in hydrocarbon reservoir engineering in order 
the size of the reservoir to be evaluated.
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