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Abstract
The support vector machines (SVMs) is one kind of novel 
small-sample machine learning methods based on solid 
theoretical background. Highly nonlinear regression and 
classification are their two applications. Different from 
conventional statistics methods, the SVMs employs the 
structural risk minimizing principle, which leads to high 
predication precision. For this method is not essentially 
related to probability measure and Law of Large Numbers, 
the final decision function is only determined by a small 
fraction of sample, called support vectors. Consequently, 
the complexity of computation only depends on the 
number of support vectors rather than the dimensions of 
the original sample space. In most occasions of oil and gas 
development, only small samples are available to predict 
the results of one measure. Introduction of SVMs into 
these applications can significantly improve prediction 
precision.
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INTRODUCTION
To predict the response of treatments in oil and gas 
development, the multivariate regression method was 
more often employed at early time and the artificial 
neural network later was used[1]. Both of the two methods 
belong to conventional statistical learning methods. Their 
prediction precision can be theoretically guaranteed only 
if the size of their sample is large enough, close to infinity. 
In real prediction occasions, sample sizes are always 
limited. Even small samples are available in some cases. 
No satisfactory prediction results can be obtained for these 
conventional statistical methods based on Law of Large 
Numbers[2].

A small sample statistical learning theory was put 
forward by Vapnik and others[3]. The use of structural risk 
minimization prevents SVMs from the problems that the 
artificial neural network method suffers. These problems 
include difficulty to determine the network structure, 
over-learning, under-learning and local minimization. 
Consequently, the SVMs is considered the optimal method 
for small-sample classification and regression. It is 
suitable for kinds of nonlinear fitting functions by forming 
the functions through the kernel function on the basis of 
the representative samples (support vectors) selected from 
the total sample[4-8].

1.  PRINCIPLE OF SVMS

1.1  Linear Regression SVMs
For a given training sample set, it is a task of seeking 
an optimal regression hyperplane to seek an optimal 
linear regression function y = f(x) = (w * x) + b. Consider 
the insensitive function ϵ as the error function. When 
the distances from all sample points to the potential 



73 Copyright © Canadian Research & Development Center of Sciences and Cultures

MENG Minghui; ZHAO Chuanfeng (2015). 
Advances in Petroleum Exploration and Development, 10(2), 72-75

hyperplane are all less than or equal to ϵ, this task can 
be further transformed to a task solving a quadratic 
convex programming problem. When the distances from 
individual sample points to the potential hyperplane 
are greater than ϵ, a quadratic convex programming 
problem seeking an optimal regression hyperplane can be 
established through introducing the slack variable ξi.

  min1
2||w||2 + C Σi (ξi + ξi

*). (1)
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An optimal hyperplane linear regression function can 
be obtained as follows through the Lagrange mutiplier 
algorithm and considering the Karush-Kuhn-Tucker 
condition. 

 f (x) = (w * x) + b = ΣS.V. (αi - αi
* ) (x * xi) + b. (3)

Where, αi, αi
* and b are parameters to determine the 

optimal hyperplane, which can be obtained through the 
constraint condition. The support vectors (xi, yi) are those 
training samples corresponding to nonzero coefficients αi 
or αi

* (αiαi
* = 0 always holds true, for αi and αi

* can not 
be equal to 0 at the same time). It is indicated that the 
optimal hyperplane can only be determined completely by 
the support vectors. For both the objective function and 
the constraint condition are convex, it can be stated that 
only one global miminal solution exits for this problem 
according to the optimization theory.

1.2  Nonlinear Regression SVMs
If the linear regression function can not be determined 
within the given sample set, the sample space needs to 
be mapped into a feature space supported by the eigen-
function K(x, y) = Σi λi φi(x) φi (y) = (φi (x) * φi (y)) with the 
Mercer kernel through the nonlinear mapping function  
φi (x) = (√λ1φ1(x), √λ2φ2(x),…, √λkφk(x)). For only the 
scalar product is involved in this process, it is not 
necessary to know the explicit expression of the mapping 
function. Instead, the corresponding kernel function is 
employed. This is the key step leaping from the linear 
SVMs to the nonlinear SVMs. With the use of the linear 
SVMs in the feature space, the regression function can be 
tranformed as follows.
  f (x) = (w * φ(x)) + b = ∑i=1

l (αi - αi
*) (φ(x) * φ(xi)) + b. (4)

With the Mercer theorem taken into accout, the 
equation above can be simplified to the final regression 
function for the nonlinear SVMs.

f (x) = (w * φ(x)) + b = ∑i=1
l (αi - αi

*) K (x * xi) + b.  (5)
It can be seen that the nonlinear regression output for 

the original sample space can be obtained through the 
calculation with the kernel function, if only the support 
strength and threshold values of the support vectors are 
determined. With this transformation, a nonlinear SVM 
problem can be solved with a kernel function and the 
linear SVMs. 

1.3  Common Kernel Functions
As stated above, one of the advantages that the SVMs 
holds is that only the kernel function needs to be defined in 
high dimension spaces instead of the explicit expressions 
of the feature space and the nonlinear mapping function. 
With this advantage, no much increase is imposed on the 
calculation complexity even though the space dimension 
increases much after transformation. 

Adoption of different kernel functions will lead to 
different SVM algorithms. At present three kinds of kernel 
functions are mainly used.

(a) Multinomial Kernel Functions
  K(x, y) = (1 + x * y) p. (6)
(b) Radial Basis Functions
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(c) Sigmoid Kernel Functions
   K(x, y) = tanh [v(x * y) + c]. (8)

2 .   S V M S  A N D  S M A L L - S A M P L E 
PREDICTION
Stimulation treatments, improved or enhanced oil recovery 
methods are sometimes needed during the process of oil and 
gas field development. Prior to these treatments are employed, 
predictions need to be conducted on treatment response. 
However, the variation in oil reservoir properties makes it 
impossible to forecast treatment response in another oilfield 
with the samples from one oilfield. Even in the same oilfield, 
it is not suggested to forecast response in another region with 
the samples form one region. Predictions of this kind actually 
involve only small samples. Introduction of SVMs into these 
predictions can greatly improve the prediction precision. One 
example is presented as follows about an actual response 
prediction of conformance control treatment in water 
injectors. This example was used in Reference [1] with the 
BP artificial neural network method employed for response 
prediction. The obvious improvement in prediction precision 
can be seen with the SVMs.

2.1  Prediction Steps
When used to predict the response of conformance control 
treatment, the SVMs have the similar procedures to the 
artificial neural network method. Firstly, it is needed to select 
the main factors affecting the response of conformance 
control treatment, including the pressure index, average water 
injection rate and injection pressure of candidate wells prior to 
treatment, and the average watercut of the offset oil production 
well, as well as the treatment volume of the chemical agents. 
These five input variables, that is, the five factors, and the 
output variable (treatment response, that is, oil incremental) 
construct a SVM regression problem. It should be noted that 
the input and output parameters should be normalized into the 
range [-1, +1] in order to eliminate the effects caused by the 
difference in parameter dimension and unit.
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The next step is to select different kernel functions and 
relevant parameter values to fit the training samples and 
predict the validation samples. The applicability of the 
selected model can be determined according to the validation 
result. If the required prediction precision can be satisfied 
with the selected model, the prediction model is proven 
suitable and reliable. Finally, this model can be used for 
response prediction of conformance control treatment in 
water injectors with similar reservoir properties. 

2.2  Field Case
For the purpose of a full contrast, the SVMs and the BP 
artificial neural network method are seperately used to 
fit the whole sample set from 11 wells. The parameters 
in the sample set and the fitting results are shown in 
Table 1. And then the parameters from 8 wells are 
used as training samples to predict the response of the 
remaining three wells. The prediction results are shown 
in Table 2.

Table 1
The Whole Sample Set and the Fitting Results

Well 
names

Pressure 
index

Water injection 
pressure

Water 
injection rate Watercut Treatment 

volume
Acutal 

dimensionless oil 
incremental

Regression 
fitting results 
with SVMs

Regression 
fitting results 

with BPMPa MPa m3/d % t

1-11N13 31 4 160.3 59 6 -0.9199 -0.9193 1.2

1-16N17 2 2 134.3 96.4 30 -0.0837 -0.0835 -0.0089

1-18-19 27 4 105.7 90.6 5 -0.0428 -0.0423 0.2784

1-2-13 31 4.33 212.7 96.1 5 0.2935 0.2938 0.1858

1-3N17 0.4 1 148 96.4 36 -0.0041 -0.0035 0.4738

1-4-817 12 2 206.7 91.5 28 1.1903 1.1893 0.8154

1-5N16 53 7 256 97.3 30 -0.0483 -0.0494 -0.0637

D9-24 28 5.67 210.7 96.3 50 0.5723 1.0293 0.219

1-16-21 34 5 205.3 94.5 20 0.128 0.1273 0.1737

1-17-16 26 4 143.3 96.5 30 0.0833 0.0817 -0.0663

1-19-172 24 5 152.7 93 30 0.1185 0.1196 0.1352

Table 2
Prediction Results With SVMs and BP

Well names Acutal dimensionless 
oil incremental

SVMs
BP

Multinomial kernel function Sigmoid kernel function Radial basis function

1-11N13 -0.0199 -0.3389 -0.4632 -0.9201 1.2000

1-16N17 -0.0837 0.3364 -0.0013 -0.00827 -0.00841

1-18-19 -0.0428 -0.1437 -0.4987 -0.0444 0.9979

1-2-13 0.2935 0.2494 0.5125 0.2953 0.2865

1-3N17 -0.0041 0.4873 0.4526 -0.0039 0.2622

1-4-817 1.1903 0.6093 0.7328 0.7053 0.9182

1-5N16 -0.0483 0.5327 0.4083 -0.0485 -0.0687

D9-24 0.5723 1.2007 0.2265 0.4823 0.2328

1-16-21* 0.1280 0.3575 0.2566 0.2217 0.2586

1-17-16* 0.0833 0.3503 -0.1672 0.0643 -0.0278

1-19-172* 0.1185 0.2491 -0.1705 0.1563 0.2563

Note. * indicates a well to be predicted.

It is indicated from Table 1 that the fitting results with SVMs 
are much tightly close to the actual oil incremental and much 
higher in fitting precision than the BP artificial neural network 
method except Well D9-24. In particular, if the actual oil 
incremental is a negative value (such as Wells 1-11N13, 1-16N17, 
1-5N16, 1-18-19, 1-3N17), the fitting precision of SVMs is far 
higher than that of the BP artificial neural network method.

It can be seen from Table 2 that the prediction 
precision of SVMs, higher than that of the BP artificial 
neural network method, can satisfy the requirement of 
engineering application when the radial basis function is 
adopted. However, if an inapplicable kernel function is 
used, the prediction precision may be lower than that of 
the BP artificial neural network method.
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CONCLUSION
( a )  T h e  S V M s  c a n  o v e r c o m e  t h e  i n h e r e n t 

disadvantages of the artificial neural network method. The 
field case indicates that the SVMs is higher in prediction 
precision than the BP artificial neural network.

(b) In order to improve the prediction precision of the 
SVMs, a suitable kernel function and relevant parameters 
should be employed.

(c) The SVMs has a promising prospect when used 
for the response prediction of improved or enhanced oil 
recovery techniques in oil and gas field development.
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