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Abstract
The interaction of oxygen with Fe nanowire-filled single-
walled carbon nanotubes (SWCNT) was investigated 
using density functional theory calculations. The 
adsorption energies and stable structures on different 
adsorption sites on the Fe nanowire-filled SWCNT were 
obtained and compared with pristine SWCNT. The results 
show that the oxygen atom adsorbs strongly on a bridge 
site on the SWCNT surface in all cases, with weaker 
adsorption energies for the Fe nanowire-filled cases. 
Meanwhile, the molecular adsorption was enhanced by 
the presence of Fe while lowering the energy barrier 
required for dissociation. Thus, filling with Fe enhances 
the oxygen reduction capabilities of SWCNTs and makes 
them better catalysts for various applications such us in 
hydrogen fuel cells.
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INTRODUCTION
Since their discovery in 1991 by Iijima, carbon nanotubes 
(CNTs) have received a great deal of attention due to 
their fascinating properties that open possibilities for 
many applications. Recent CNT research has focused 
mostly on device applications. In particular, single-walled 
carbon nanotubes (SWCNTs) have been considered 
for nanoscale electronic, spintronic, and biomedical 
applications (Ebbesen, 1997), as well as in fuel cell 
technology-as catalyst support and hydrogen storage 
material (Dicks, 2006; Lafuente et al., 2006; Girishkumar, 
Vinodgopal, & Kamat, 2004), and as electrochemical 
and biosensors (Zhao, Gan, & Zhuang, 2002; Wang, 
2005; He & Dai, 2006). Several studies have been 
conducted on the interaction of CNTs with oxygen for 
both fundamental and practical reasons, since most of the 
possible applications of CNTs involve oxygen. Collins, 
Bradley, Ishigami, & Zettl (2000) found that exposure to 
ambient air or oxygen dramatically influences electrical 
resistance, thermoelectric power, and local density of 
states of SWCNTs. Experiments on CNT field emitters 
have shown that the adsorption of oxygen induces a 
significant increase in the emission current (Dean & 
Chalamala, 2000). Also, Kang, Park, Ko, Bae, & Park 
(2005) reported that oxygen adsorption on a CNT-based 
field effect transistor induces p-type doping in the CNT 
body. In addition, purification of synthesized CNTs from 
other undesired carbon-based nanoparticles could also 
be done through oxidation at high temperatures, where 
oxygen reacts with the strained C-C bonds (Ajayan et al., 
1993; Ebbesen, Ajayan, Hiura, & Tanigaki, 1994). For 
the case of SWCNTs, Barberio et al found that there is 
no indication of oxygen adsorption for pristine and clean 
nanotubes (Barberio, Barone, Bonanno, & Xu, 2009).

Hydrogen fuel cells have been the subject of interest 
in the search for alternative sources of energy. One 
of these fuel cells is the proton exchange membrane 
fuel cell (PEMFC), which utilizes the energy from 
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the electrochemical reaction of hydrogen and oxygen. 
The splitting of the hydrogen molecule at the anode is 
relatively easy by using a platinum catalyst, but separating 
the stronger oxygen molecule at the cathode is more 
difficult, thus causing significant energy losses (Xie et 
al., 2005). PEMFC catalysts are normally supported by 
carbon-support materials such as carbon black (Vulcan 
XC-72). However, carbon black is known to undergo 
chemical oxidation to surface oxides and eventually to 
CO2 at the cathode of the PEMFC (Kangasniemi, Condit, 
& Jarvi, 2004). Another study found that Pt accelerates 
the corrosion rate of carbon black (Roen, Paik, & Jarvi, 
2004). There is a need to use alternative more stable 
carbon support, such as carbon material with more 
graphitic component (e.g. carbon nanotubes) (Wang, Li, 
Chen, Waje, & Yan, 2006).

CNTs filled with ferromagnets demonstrate very high 
potential in providing modified electronic and magnetic 
properties, low dimensionality, and small volume that 
make them useful in various applications (Liu et al., 
1998; Wong, Sheehan, & Lieber, 1997; Saito, 1997; 
Tans et al., 1997; Hu, Ouyang, Yang, & Lieber, 1999; 
Tans, Verschueren, & Dekker, 1998; Kasai et al., 2008). 
In particular, magnetic and electronic properties of Fe 
nanowire-filled SWCNTs (Fe-SWCNTs) were found 
to differ with varying diameters (Kisaku et al., 2005). 
In addition, the CNTs encapsulating the Fe nanowire 
transforms into an arch-like structure when the Fe 
nanowire is near a Ni (111) surface (David, Kishi, Kisaku, 
Nakanishi, & Kasai, 2006; David, Kasai, Moreno, & 
Kasai, 2008). Pt-decorated SWCNTs have been considered 
as catalyst material for oxygen reduction at the cathode of 
the PEMFC (Lafuente et al., 2006). However, platinum is 
a rare and expensive material and PEMFC research has 
focused on reducing or eliminating the use of platinum. 
In this paper, Fe-SWCNT is proposed as an alternative 
catalyst material. It is important to note however that 
hydrogen peroxide, which is a side product in the 
reduction of oxygen to water, has been found to selectively 
oxidize semiconducting SWCNTs. The presence of Fe 
was found to promote this oxidation (Miyata, Maniwa, 
& Kataura, 2006). Theoretical calculations have shown 
that this selective oxidation could possibly be applicable 
to semiconducting Fe-SWCNTs (Moreno, David, Kasai, 
Nakanishi, & Kasai, 2009).

For this study, we are looking at the possibility of Fe-
SWCNT as an alternative to Pt-decorated SWCNT as 
catalyst material for oxygen reduction at the cathode of the 
PEMFC. The effect of oxygen adsorption on Fe-SWCNTs 
will be investigated through first principles calculations. 
In particular, the adsorption energies and stable structures 
will be evaluated for Fe-SWCNTs with different diameters 
and electronic properties. The effect of Fe filling will also 
be investigated by comparing the obtained results with the 
adsorption of oxygen on pristine SWCNT.

1 .   T H E O R E T I C A L  M O D E L  A N D 
METHODS
In this study, the atomic and molecular adsorptions 
of oxygen were both investigated. Three chiralities 
of SWCNTs were considered for both pristine and Fe 
nanowire-filled cases: (5,0), (3,3), and (5,5). These 
chiralities were chosen in order to compare oxygen 
adsorption on different diameters as well as different 
electronic properties. Half of the cases are metallic 
while the other half are semiconducting. Initial 
magnetic moments used are 2.0 µB for the oxygen 
atom and 2.4 µB for each Fe atom. The structures were 
optimized and compared to previous studies (Kasai et 
al., 2008; Kisaku et al., 2005; David et al., 2006; David 
et al., 2008). Three adsorption sites were considered for 
the adsorption of oxygen: bridge (B) site, top (T) site, 
and at the center of the hexagonal plane or hollow (H) 
site (Figure 1). 

Figure 1 
The Supercell for (3,3) Fe-SWCNT 
C atoms in grey and Fe atoms in yellow; The adsorption sites are 
also indicated.

The adsorption of atomic oxygen was evaluated by 
placing an oxygen atom on the adsorption sites and 
the adsorption energies and optimized structures were 
obtained. On the other hand, the molecular adsorption 
of oxygen was investigated through single-point 
energy (SPE) calculations while the transition states 
and energy barriers associated with dissociation were 
obtained using the climbing nudged elastic band (cNEB) 
method. The triplet state of the oxygen molecule 
was used.  Spin-polarized calculations based on 
density functional theory (DFT) (Hohenberg & Kohn, 
1964; Kohn & Sham, 1965) using plane waves and 
pseudopotentials are performed using the Vienna ab 
initio Simulation (VASP) package (Kreese & Joubert, 
1999). Generalized gradient approximation (GGA) 
based on Perdew-Burke-Ernzerhof (PBE) functional 
(Perdew, Burke, & Ernzerhof, 1996; Perdew, Burke, & 
Ernzerhof, 1997; Hammer, Hansen, & Norskov, 1999) 
was used for the exchange-correlation energy. The 
one-dimensional Brillouin zone was sampled using 35 
Monkhorst-Pack k-points (Monkhorst & Pack, 1976) 
along the nanotube axis.
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2.  RESULTS AND DISCUSSION
The adsorption energies were obtained using the following 
equation,

Eads = Esys - Eiso

where Esys is the total energy of the system and Eiso is 
the sum of the energies of the isolated SWNT (pristine or 
Fe nanowire-filled) and oxygen (atomic or molecular). 
Optimized stable structures for atomic adsorption show 
that the oxygen atom prefers to be adsorbed on the 
bridge site in all the cases. The adsorption energies are 
about 1.0-1.2 eV weaker for the Fe nanowire-filled cases 
when compared with the pristine cases. Furthermore, 
the adsorption energies tend to decrease with increasing 
diameter, as observed for both the pristine and Fe 
nanowire-filled cases. The magnetic moments of the 
O and Fe atoms disappeared for the Fe nanowire-filled 
cases. The stable structures are shown in Figure 2.

Figure 2
Stable Structures for Oxygen Atom Adsorption
Top row from left to right: (5,0) pristine SWCNT, (3,3) pristine 
SWCNT, and (5,5) pristine SWCNT. Bottom row from left to right: 
(5,0) Fe-SWCNT, (3,3) Fe-SWCNT, and (5,5) Fe-SWCNT. 

The SPE calculations for the oxygen molecule was 
performed by calculating the adsorption energies for 
different values of the oxygen molecule bond length, 
r and the distance of the oxygen molecule from the 
adsorption site, z. Since the bridge site was found to be 
the most stable site for atomic adsorption, the reaction 
path considered for molecular adsorption has the oxygen 
molecule approach the SWCNT in such a way where both 
oxygen atoms would adsorb on opposite bridge sites. The 
resulting potential energy surfaces (PES) were analyzed. 
Figure 3 shows the PES for the case of (3,3) Fe-SWCNT. 
The oxygen molecule approaches the SWCNT surface, 
it encounters an energy barrier of about 1.3 eV before it 
can dissociate. The minimum energy before the barrier, 
which we shall call the molecularly adsorbed state, was 
found to be -0.21 eV at a height of 2 Å from the SWCNT 
surface. After the barrier we have a second minimum 
energy at -1.35 eV and the oxygen atoms are 1.2 Å from 
the SWCNT surface and are separated by 2.48 Å. We 

shall call this the dissociated state. With the molecularly 
adsorbed and dissociated states from the PES calculations, 
we employ the cNEB method to obtain the transition state 
(TS) and corresponding energy barrier. The TS energy 
for the (3,3) Fe-SWCNT was 1.14 eV, corresponding to 
an energy barrier of 1.35 eV, which is comparable to the 
obtained value from the PES. The results of the other 
cases, summarized in Table 1, reveal a consistent trend—
that the oxygen molecule is stable with low adsorption 
energy that is characteristic of molecular physisorption 
and that a significant energy barrier must be overcome for 
dissociation to occur.
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Figure 3
Potential Energy Surface (PES) for Oxygen Molecule 
Adsorption on (3,3) Fe-SWCNT

Table 1 
PES Analysis and cNEB Data for Oxygen Molecule 
Adsorption

System Ei (eV) Ef (eV) EB (eV) ETS (eV)

(5,0) Pristine -0.22 2.12 5.05 4.89

(5,0) Fe-SWCNT -0.29 1.26 3.29 3.32

(3,3) Pristine -0.17 -1.35 1.94 2.01

(3,3) Fe-SWCNT -0.21 -0.53 1.30 1.35

(5,5) Pristine -0.03 0.27 0.45 0.55

(5,5) Fe-SWCNT -0.10 0.18 0.37 0.42

Ei and Ef are the adsorption energies of the initial 
and final states from the PES; EB is the energy barrier 
also from the PES; and ETS is the energy barrier of the 
transition state from the cNEB.

However, the energy of the dissociated state for the 
(5,0) and (5,5) cases are above the reference energy. 
Thus we conclude that dissociation is not favored for 
these cases. The obtained results are consistent with the 
experimental work by Barberio et al. (2009) on pristine 
SWCNTs as well as previous theoretical calculations on 
pristine SWCNTs (Giannozzi, Car, & Scoles, 2003; Dag, 
Gulseren, Yildirim, & Ciraci, 2003). Moreover, when 
comparing the reactivity of oxygen on Fe-SWCNT with 
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the pristine cases, the general trend is that the molecular 
physisorption energies are stronger whereas the adsorption 
energy of the dissociated cases and its corresponding 
energy barriers are lower for Fe-SWCNT cases. This 
can be attributed to the modified electronic structure of 
the nanotube due to the effect of Fe. The surface carbon 
atoms in the vicinity of Fe have a depletion of occupied 
states near the Fermi level as compared to the surface C 
atoms of the pristine SWCNT (Kasai et al., 2008). This 
explains the weaker adsorption of dissociated states on 
Fe-SWCNT. However, there is a slight enhancement of 
the charge transfer from the surface carbons atoms of 
Fe-SWCNT to the molecularly adsorbed oxygen, thus 
explaining the stronger molecular physisorption. This 
combination makes Fe-SWCNTs better than pristine 
SWCNTs for oxygen reduction as it promotes stronger 
molecular adsorption, as well as easier desorption of the 
dissociated atoms.

SUMMARY
The atomic and molecular adsorption of oxygen on 
pristine and Fe-SWCNTs were investigated. The results 
for atomic adsorption showed that the oxygen atom 
adsorbs strongly on the bridge site in all the cases studied. 
The magnetic moments of O and Fe atoms disappear as 
O is adsorbed on the SWCNT surface. Also, the oxygen 
atom weakly adsorbs on the Fe-SWCNTs compared to 
the pristine cases. Similarly, the presence of Fe resulted 
in enhanced molecular adsorption as well as lower 
chemisorption energies and energy barriers for oxygen 
dissociation on SWCNTs. Thus the presence of Fe 
enhances the oxygen reduction capabilities of SWCNTs. 
This knowledge can be useful in designing better catalysts 
for oxygen reduction in various applications such as in the 
cathode of the PEMFC.
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