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Abstract
The existing discrete form of the Hardy-Weinberg genetic 
law is applicable for a family tree. For population it is 
necessary to use a continuous time scale. The differential 
form of the Hardy-Weinberg law is offered. On the basis 
of this form of the law the demographic problem is 
considered where oncological diseases connected with 
the action of the stochastic mutagen factor. Genetic-
mathematical aspects of hemophilia are considered in 
the assumption of the equivalent constant mutagen factor 
action. 
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INTRODUCTION
The Hardy-Weinberg law which was found by English 
mathematician Hardy and German doctor Weinberg 
in 1908 plays key role in the mathematical analysis of 
genetic processes. In the elementary kind the essence of 
this law will consist in the following.

In the elementary kind of two alleles of autosomal 
genes relative frequencies of genotypes in generations 
correspond to terms of binomial expansion (p+q)2so 

p+q=1 where p and q is alleles frequencies. Relative 
frequencies of genotypes remain constant from generation 
to generation in case of the ideal population (number of 
species is very great, exist panmixia, there is no selection, 
mutations, migrations of species, etc.). Since founders of 
the law Hardy and Weinberg it is supposed that in such 
kind the law describes the processes in population (Vogel 
& Motulsky, 1990; Ayala & Kiger, 1984; Li, 1976; Weir, 
1990; Volobuev, 2005; Brown & Rothery, 1994).

However founders of the law and the subsequent 
authors at use of the law make essential methodical 
mistake. The matter is that the population will consist 
of set of family trees which periodically contact among 
themselves. On Figure 1 the principle of population 
formation from separate family trees is shown. There the 
square means a male individual, a circle - female.

For example, three family trees are shown. For the family 
tree it is possible to consider the time of one generation 
change approximately T≈25-30 years. For the population 
this time can be any t1,t2, etc. For the population continuous 
alternation of generations is characteristic and hence the 
form of the Hardy-Weinberg law should not have discrete 
character. In it there is essence of the basic methodical 
mistake of application of the Hardy-Weinberg law for the 
population. In used form the Hardy-Weinberg law is written 
down for the family tree.

Figure 1 
Formation of  the  Populat ion From Separate 
Contacting Family Trees
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1.  HARDY-WEINBERG LAW FOR THE 
FAMILY TREE
For reception of necessary form of the Hardy-Weinberg 
law for population we shall start with the analysis of a 
separate family tree. It is obvious that in this case it is 
possible to use the given law in its standard form.

In the analysis the elementary case of two alleles of a 
gene linked to the Х-chromosome is used. The frequency 
of dominant alleles A we shall designate at men mp  and 
at women fp . For recessive alleles a it is accordingly mq  
and fq .

At reproduction in the first generation there is 
the ratio of women genotypes according to product 
( )( )mmff qpqp ++  Thus:

      fmmffmmf qqaaqpqpAappAA :)(:   (1)

Men have hemizygous the frequency ratio on genes in 
the Х-chromosome determined by that the Х-chromosome 
of the woman at reproduction passes to the man’s 
offspring:

    ff qapA :   (2)

Using distribution of genotypes (1) we shall find 
frequency of allele a at women in the following ( )1+n  
generation:
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At the deduction (3) the following obvious formulas 

pmn=1-qmn and pfn=1-qfn are used. The formula (3) can be 
copied in the following kind:

  02 1 −  mnnffn qqq   (4)

For convenience of the further analysis the formula (4) 
we shall write down with displacement on one generation 
back:

    02 11 − −− nmfnnf qqq   (5)

At the absent of mutagen influence the frequency of 
allele a at men is equal to the frequency of this allele 
at women of the previous generation ( ) ( )21 −− = nfnm qq  
Using the given condition from (5) we shall find:

    02 21 − −− nffnnf qqq   (6)

The solution of the finite-differential equation (6) 
we search as n

fnq a= where in this case a is constant. 

Substituting this solution in the formula (6) we have:

02 21 − −− nnn aaa  (7)

Let’s divide the equation (7) on 2−na :

012 2 − aa  (8)

We find two roots of the characteristic quadratic (8):
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Hence, the general solution of the finite-differential 
equation (6) looks like:
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Constants of integration C1 also C2 we shall find on the 
basis of the initial conditions: at n=0, 0ffn qq =  and at 

n=1 according to (3) 
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Therefore the solution (11) finally looks like:
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2 .   P O P U L AT I O N  D Y N A M I C S  O F 
GENOME
As it was already specified the Hardy-Weinberg law in the 
kind considered above there is concerns to separate family 
tree. Implicitly this law includes time since alternation of 
generations occurs through certain time T. Thus, Hardy-
Weinberg law in form (1) has the expressed discrete 
character on time. The population will consist of family 
trees crossed among themselves and lives in continuous 
time. Alternation of generations of set of family trees 
results to the generations vary actually according to 
continuous time scale.

Let’s transit to the continuous time scale n. Under size 

T
tn =  in this case we mean time of the population life 

normalized on average in the population time of the one 
generation life, i.e. actually dimensionless time.

Let’s find out, whether there is the differential equation 
having the characteristic equation similar (7) or (8). For 
this purpose we shall consider the differential equation:

    01
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2

 −−

dn
dq

dn

qd nfnf η  (13)

where η  is constant.
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Let’s transform the equation (13) to finite-differential 
form:

        0
2 21
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Uniting similar members and multiplying the equation 
(14) on 2−  we shall find:

        012222 21 ∆−−∆−− −− nfnffn qnqnq ηη (15)

Let’s try to identify the equations (15) and (6). For this 
purpose it is necessary to accept:

( ) 122 =∆− nη                                                           (16)

   112 ∆−− nη  (17)

Wonderful feature of the equations (16) and (17) is that 
they have one and too the solution:

2
3
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It means that the equation (6) and the differential equation 
(13) can have the same characteristic equation. Taking into 
account (18) the equation (13) can be copied as:

    0
2

3 1
2

1
2


∆

 −−

dn
dq

ndn

qd nfnf   (19)

The equation (19) can be integrated once:
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where C1 is constant of integration.
Further integrating the equation (20) by method of 

separation of variables:
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we shall find:
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Identifying the solution (22) with the solution (12) we 
shall find:
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As it was expected the formulas (23) do not contradict 
each other. Hence, the solution (22) can be written down as:
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The formula (24) is correct for frequency of allele a 
only in even generations. This is consequence of transition 
to the continuous scale of generations n. 

Comparing (12) and (24) for even generations we 

have n
nn e ∆

−− = 2
3

2
 or 

2ln2
3

∆n  Hence, (24) it will be 

transformed to the kind:
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that is identical to the formula (12) for even 
generations.

Taking into account (18) and 
2ln2

3
=∆n  we find 

2lnη . Thus, the differential equation (13) will be 
written down as:

    02ln 1
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 −−

dn
dq

dn

qd nfnf  (26)

As we used the continuous time the concept of 
generations actually does not play any role and the 
formula (26) it is possible to write down as:

02ln2

2


dn

dq

dn

qd ff  (27)

The formula (27) it is Hardy-Weinberg law in case 
of continuous alternation of generations, i.e. for the 
continuous time scale at absence of mutagen influence on 
population. The equation (27) defines the time dependence 
of recessive allele a frequency ( )nq f  linked with the 
Х-chromosome for women in the population.

The differential equation (27) as it is determined by 
the Hardy-Weinberg law reflects indifferent equilibrium 
of genome (Volobuev, 2005). Really, to the equation (27) 
satisfies the solution constq f = , i.e. any constant value 
of allele frequency it is stable.

3.  MUTATIONS
Extremely important topic of mathematical genetics 
there are mutations. The mutations explain genetically 
dependent hereditary diseases. Mutations allow explain 
process of the evolution of organisms. Mutations underlie 
of animals and plants breeding.

Mutations are spontaneous and induced (Vogel & 
Motulsky, 1990).
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During induced mutations there is interaction of the 
mutagen factor and individual exposed mutation.

Process of the mutation has stochastic character. The 
individuals under action of the mutagen factor with some 
probability can be subjected to mutations, and can not be 
subjected.

During mutation the mutagen factor has the important 
role. It is possible classification mutagen factors into two 
groups: determined and stochastic.

The determined mutagen factors can be constant or 
functionally time-dependent.

For example, process of mutagenesis under action of 
the determined mutagen factor in due course reducing the 
intensity according to exponential law of disintegration 
of radioactive elements in the environment is considered 
(Volobuev, 2005). 

3.1  Action of the Stochastic Mutagen Factor on 
the Population
Let’s analyze influence of the stochastic mutagen factor 
by the example of the occurrence malignant newgrowths.

Among other kinds of diseases the occurrence of 
malignant newgrowths has some features. First of all, 
it is the big variability of the newgrowths site. It can 
practically arise in any place of the organism. Besides 
for oncological diseases there are typically a variety of 
the mutagen (cancerigenic) factors: poor-quality food, 
polluted environment, mode of life and professional work, 
smoking and many other factors.

All these cancerogenic factors finally affect on the 
mitogenetic function of a cell causing its malignant 
transformation.

Is generalized we shall consider that set of the reasons 
resulting to occurrence of the malignant newgrowths it is the 
influence on the organism of some stochastic mutagen factor.

Despite of the stochastic character of influence it 
is difficult to assume the situation at which the given 
stochastic mutagen factor completely would be absent. 
It concerns even completely isolated primitive societies. 
Especially such factor in any kind always is present at a 
modern civilized society.

As investigated model we shall consider homogeneous 
and stable in the demographic attitude a human society 
of very much advanced country with a high level of 
development of the medicine accessible to all population. In 
such countries death rate of the population basically should 
be caused by oncological diseases which start to play the role 
of the natural factor of inevitable alternation of generations. 
We shall name such countries demographic stationary.

It is possible to assume also that in similar societies the 
genetic-mathematical laws determining death rate of the 
population from oncological diseases should operate, i.e. 
as result of action of the stochastic mutagen factor.

To understand how it is possible to take into account 
action of the stochastic mutagen factor we will address 
to other well investigated physical phenomenon—to the 

Brownian motion (Matveev, 1981). Brownian motion 
of a particle in a liquid at first sight should not exist. 
Really, on Brownian particle, for example, flower pollen 
impacts the molecules of the liquid which operation are 
counterbalanced from different directions. Therefore, 
the most probable condition of the particle is motionless. 
The particle should shiver only but should not have 
some constant displacement from a point of supervision. 
Einstein and Smoluchowski have shown that physically 
the Brownian motion is consequence of statistical 
properties of the second law of thermodynamics. If the 
researcher has relative small number of the molecules the 
essential deviation from the most probable state of system 
should be observed in this case the motionless state of the 
Brownian particles.

Let’s note the main similarity of two phenomena: 
the Brownian motion and existence of the population in 
conditions of the stochastic mutagen factor action. 

At the Brownian motion on the determined system 
- particle in the liquid – stochastic force acts from the 
molecules of a liquid.

In the researched case on the determined system - 
reproductive genome─some stochastic mutagen factor acts.

At the Brownian motion the equation of movement of 
the particle looks like:

F
dt
dSr

dt
Sdm 2

2
  (28)

where m there is mass of particle, S - displacement 
of the particle from initial position, r - factor of medium 
resistance to movement of the particle, t - time, F - 
stochastic force acting on the particle from the molecules 
of liquid. We shall note absence in the equation (28) the 
elastic forces which is determined returned the particle 
in initial position causing its oscillation around of the 
balance point. 

The equation (27) is similar to the equation (28) for 
F=0. 

If there is some stochastic mutagen factor D(n) 
randomly time-dependent lives of the population the 
equation (27) by analogy with (28) it is necessary to copy 
as:

 nD
dn

dq

dn

qd ff  2ln2

2
 (29)

Using the result for the first time received by Einstein 
(Matveev, 1981) for the Brownian motion ( ) tS ~2∆  we 
shall note that average square of the deviation of the allele 
frequency from norm (25) at action on the population of 
the stochastic mutagen factor is proportionally time of the 

population life tion life ( ) nq f ~
2

∆ . Angular brackets are mean 

averaging on individuals of the population.
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Thus, during life of the population at action of the 
stochastic mutagen factor the mean square deviation 
of the allele frequency from the norm is proportionally 
to the root square from time of the population life 

time of the population life ( ) nq f ~
2

∆ .  At the certain level of the mean 

square deviation of the allele frequency from norm can 
lead to lethal outcome. For separate individual the lethal 
deviation is individually.

Figure 2 
The Dynamics of Death Rates (Mortali ty Rate 
Coefficient) of the Population in the Various Countries 
From Newgrowths (Kalabekov, 2010)

The received result shows that during of the population 
life and alternation of generations at action of the stochastic 
mutagen factor the death rate inevitably grows (similarly 
to displacement of the Brownian particles from the point of 
initial supervision). This conclusion has completely general 
biology-mathematical character also is consequence of 
the second law of thermodynamics, i.e. consequence of 
inevitable growth of entropy in the population. 

On Figure 2 the dynamics of death rates (mortality rate 
coefficient) of the population in the various countries from 
newgrowths is shown (Kalabekov, 2010). A mortality 
rate coefficient this ratio of quantity of died people in the 
country for the year to the average number of population 
in the given year multiplied on 1000.

Time interval 20 years during which death rate was 
investigated is small term but it is possible to make some 
conclusions.

In two countries Japans and Canada the law: death 
rate n~  is obviously observed. Distinctive feature 
of these countries is, first, very high level of medicine, 
second, high uniformity of the population which is almost 
without exception uses these achievements of medicine. 
Some other social factors determining as whole a positive 
psychological climate in these countries influence also. 
In other words the situation with detection at the earliest 
stage and treatment of the newgrowths in these countries 
has approached to the stationary limit on the given level 

of development of the country. The not changes in this 
direction therefore the law - death rate n~  therefore 
is carried out. The further decrease in death rate will 
take place at occurrence and universal application of 
essentially new methods of diagnostics and treatment of 
cancer. The similar development of a medical science 
demanding the big financial expenses and intellectual 
efforts is counteracting against growth entropy in the 
population. 

In the given countries death rate from newgrowths is 
the basic natural factor of alternation of the generations.

3.2  Action of the Constant Mutagen Factor on 
Population
We research action of the constant mutagen factor on 
the population of two-alleles genome, linked with the 
Х-chromosome by the example of hemophilia.

Distribution (1) can be used also for the description 
of blood system АВO. In spite of the fact that to this 
system corresponds three-alleles ensemble of the genes 
the two alleles A and B are dominant and their general 
frequency can be designated at men mp  and at women 

fp . Alleles O has in this case frequency at men mq  
at women fq  . The ratio (1) for blood system АВO is 
not frequency distribution of blood genotypes but the 
genotype frequency aa (or a genotype OO), and also 
phenotype frequency corresponding to a blood group I it 
the ratio reflects truly. 

The basic demonstration of existence Х-linked 
recessive inheritance for the blood system АВO consists 
that the destruction at disease of blood, for example, 
hemophilia are men and daughters phenotypic are healthy 
(Vogel & Motulsky, 1990).

For the first time the mathematical genetics laws has 
applied Haldane to a problem of hemophilia on basis of 
Danforth idea about the equilibration of frequency of 
mutations and selection. Occurrence of hemophilia there 
is usually concern to spontaneous mutations. However 
formally meaning balance of mutations and selection, 
and also constancy of the population mutation occurrence 
(otherwise illness quickly would disappear) it is possible 
to calculate the problem of hemophilia assuming action 
on the blood system of some equivalent constant mutagen 
factor. Action of selection will be appreciated further.

The analysis we shall make on the basis of Hardy-
Weinberg law written down as:


dn

dq

dn

qd ff 2ln2

2
α  (30)

where the value α  there is characterizes some 
equivalent constant mutagen factor causing hemophilia.

The equation (30) can be integrated once:

32ln Cnq
dn

dq
f

f  α                                           (31) (31)
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where C3 there is constant of integration.
The equation (31) is integrated in quadrature. The 

general solution looks like:

 
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αα                                 (32) (32)

where C4there is constant of integration.
In connection with that the basic results for genetic 

research of hemophilia have been earlier received at use 
of discrete alternation generations principle at the given of 
analysis stage, for use of the previous researchers results, it 
is convenient to return to the discrete scale of generations.

Change of alleles a frequency for one generation is 
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 (33)
At increase in number of generations ∞→n  the change 

of alleles frequency is 2ln
α

∆ ∞fq .

Frequency of the mutations for hemophilia in different 
countries (into the population) changes from .4 4 10 5$

-  
(Switzerland) up to .6 4 10 5$

-  (Denmark), i.e. the gene 
of hemophilia have from 44 up to 64 women on one 
million (Vogel & Motulsky, 1990). The frequency of the 
mutations it is ratio of number of anomaly cases display 
to the double number of the examined individuals the 
corrected sizes of mutations frequencies therefore are used 
(multiplied on 2).

Let for ∞→n  the size is 5106 −
∞ ⋅−≈∆ fq . I.e. 60 girls 

which birth on one million have the gene of hemophilia. 
In this case the equivalent constant mutagen factor 

51016.42ln −
∞ ⋅−≈∆= fqα . 

The uncertain size in dynamics of change of alleles 
frequencies (33) is the constant C4. According to (33) we 
shall find the law of genic frequency decrease:
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We use the initial condition: for 1=n  according to (3) 
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From (35) we find constant C4:
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Substituting (36) in (33) we shall find:
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Believing for definiteness of calculation 00 mf qq =  
we shall receive:

      12ln
1 21

2ln
21

2ln
−−−

− −−∆ nn
nf eq αα  (38)

For n=0 we find initial change of alleles O frequency 

which is equal   2ln1
α

−∆ −fq . Taking into account 

54.16 10α −≈ − ⋅  we find ( )
5

1 106 −
− ⋅≈∆ fq . We shall note 

that the value ( )1−∆ fq  has rated character. Change of genic 
frequency at mutagenesis is real begins from time coordinate 
n=1 at which according to (38) is ( ) ( ) 001 =∆=∆ − fnf qq .It 
concerns to Figure 3 and Figure 4.

On Figure 3 the dependence of genic alleles O 
frequency change ( )1−∆ nfq  at women on the time of the 
population life plotted under the formula (38) is shown. 

The analysis Figure 3 allows to assume that under 
action of the equivalent constant mutagen factor α  there 
is average on individuals of the population the mutation 
(practically constant after n>8) resulting in average on the 
population to continuous reduction of healthy alleles O 
frequency at women and during too time to increase at them 
of destructive alleles O frequency i.e. to the hemophilia. 

Figure 3 
Dependence at Hemophilia of Genic Alleles O 
Frequency Change ( )1−∆ nfq  for Women on the 
Dimensionless Time n of the Population Life
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The law (32) of decrease in frequency of blood alleles 
O at mutations with the account (36) also 00 mf qq =  can 
be written down as:

( )
2ln3

2 2ln
4

2ln2ln2ln
n

f eCnq −++−=
ααα

 (39)

Using the initial condition: for n=0, 0ff qq =  we shall 
find:

αα 4
2ln

2ln03 − fqC   (40)

With account (40) the formula (39) we shall write 
down as:

( )2ln
0 1

2ln
4

2ln
n

ff enqq −−−+=
αα

 (41)

On Figure 4 (curve 1, the left scale of the ordinates 
axis) the graph plotted under the formula (41) for initial 
allele frequency 605.00 =fq  (Vogel & Motulsky, 1990).

Figure 4
Graph of Dependence of Decrease in Allele Blood 
O Frequency fq  on Dimensionless Time n of the 
Population Life at Hemophilia 1 (Left Scale of the 
Ordinates Axis) and at Selection 2 (Right Scale of the 
Ordinates Axis) 

4.  ACTION OF THE SELECTION ON 
POPULATION
For the analysis of the selection action on the population, 
with the purpose of the previous researches use, we 
shall return to the separate family tree. In the family tree 
where the hemophilia is observed the selection resulting 
in decrease of genic frequencies in particular of allele O 
blood operates.

Action of selection is intensive enough. For example, 
the life duration of the men who were ill by hemophilia 
makes 1/3 from the life duration of healthy people (Vogel 
& Motulsky, 1990), male fertility i.e. chances to have 

posterity in comparison with healthy men is reduced. 
Therefore not all men of the given family tree participate 
in reception of posterity and damaged alleles O eliminated 
from the family tree.

Let’s consider selection against homozygotes аа (or 
ОО). 

Genotypes before selection, for example, in generation 
n-2 are distributed according to (1).

We accept fitnesses of genotypes (Vogel & Motulsky, 
1990):

1:1:(1-s),  (42)

where s there is reduction of the homozygotes fraction 
of recessive allele as a result of selection (parameter of 
selection).

Genotypes after selection we shall write down for the 
following generation (n-1):

               
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
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  (43)

Taking into account, that

               
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we f ind  the  sum of  geno types  f requenc ies : 

   sqq nfnm 111 −−−

Further, using a standard rule of an alleles frequency 
finding in the following generation (half of heterozygotes 
frequency plus of homozygotes frequency) and the 
formula (43) we calculate the frequency of recessive 
alleles a at women in generation n it is similar (Vogel 
& Motulsky, 1990) where such calculation is made for 
autosomal genome:

             

   sqq

sqqqpqp
q
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nfnmnmnfnfnm
fn
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111111
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1
2
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−

−


 

 (44)
L e t ’s  t r a n s f o r m  t h e  f o r m u l a  ( 4 4 ) ,  u s i n g 
( ) ( )11 1 −− −= nmnm qp  and ( ) ( )11 1 −− −= nfnf qp :

        

   sqq

sqqqq
q

nfnm

nfnmnmnf
fn

11

1111

1
2
1

−−

−−−−

−

−
  (45)

We believe that alleles a frequency at the men is 
equal to alleles a frequency at the women of the previous 
generation )2()1( −− = nfnm qq . Hence:
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Mutagenesis and selection operate in one direction. If 
arisen for the account mutagenesis the damaged alleles 
will be with the same velocity due to selection eliminated 
from a family tree the balance to be kept. A quantity of the 
damaged genes is kept in the family tree but this quantity 
will not increase.

The change of allele a frequency in the family tree 
using (46) it is possible to calculate under the formula:
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 (47)
At transition to the continuous time scale we 

bel ieve difference in  genic  f requencies  of  two 
generations following one after another infinitesimal, 
i.e. ( ) ( )12 −− ≈ nfnf qq  Hence, the formula (47) will be 
transformed to the kind similar autosomal genome (Vogel 
& Motulsky, 1990):
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For transition from the family tree to the population 
we shall take the method offered by Vogel and Motulsky 
(1990) for calculation of allele a frequency at the big 
number of generations. We shall copy (48) as:
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2
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Number of generation in the index of allele frequency 
for the population we do not write, n it is dimensionless 
time. We shall integrate (49):
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In result we shall find:
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For the blood system АВО as before initial allele 
a frequency we shall accept according to Vogel and 
Motulsky (1990) 605.00 fq . 

The estimation of fitness (1-s) is enough challenge. One 
of possible ways to calculate fitness to find it is as the ratio 
of an average of survived children of the falling one parent 
which is sick of hemophilia to average of survived children 
on one healthy parent. For example, in the fitness at 
hemophilia calculated thus it is equal 1-s=1.75/2.5=0.7 (Li, 
1976). But further proceeding from some supervision the 
most comprehensible needs size 1-s=0.29. For calculation 
we shall use the size of parameter of selection s=0.71.

On Figure 4 (curve 2, the right scale of the ordinates 
axis) the graph of dependence of decrease in blood allele 
O frequency fq  on dimensionless time n at the selection 
plotted under the formula (51) is shown.

Decrease in blood alleles O frequency occurs for the 
account of the mutants alleles elimination. This process 
is rather intensive at least it much more intensively 
mutational process at hemophilia, Figure 1 (curve 1, 
the left scale of the ordinates axis). Thereof concerning 
Haldane and Danforth ideas some words are necessary 
to tell about the balance of frequencies of mutations and 
selection at hemophilia.

Such equilibration is hardly feasible. Physiologically, 
it is two different processes. The law of occurrence 
of mutations (41) is absolutely not similar to the law 
of alleles elimination in population at selection (51). 
But actually equilibrations also it is not necessary. It is 
necessary only that velocity of mutations occurrence did 
not exceed the velocity of selection.

CONCLUSION
At the first record of the Hardy-Weinberg law the 
methodical mistake has been admitted connected by that 
this law was applied to the analysis of a population in the 
form correct only to the family tree. For the analysis of 
population it is necessary to use continuous time scale and 
the mathematical section of the differential equations.

Exception of the given methodical mistake allows 
to expand the numbers of the problems solved with 
the help of the Hardy-Weinberg law in particular in 
the demographic problem it permit to clear genetic-
mathematical laws of generations alternation in the 
countries with a high level of medicine development 
and the homogeneous population also more clearly to 
understand the interrelation of mutagenesis and selection, 
for example, at hemophilia.
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