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Abstract: As the fluctuation of oil price plays an important role in global political and 

economic situation, forecasting the price of oil is significant. In this paper, we analyze 

the data of the world crude oil price using ideas of treating with the missing data, i.e. we 

take the predictor as missing data and use the EM algorithm to establish time series 

model. We give the predictive values of weekly world crude oil price of January and 

February in 2011 using the data of 2009 and 2010. Meanwhile, we found that the method 

based on missing data is more effective than normal time series method by comparing 

the predictive value with reality data. In addition, this method is also applicable to the 

case that historical observations have missing data. 
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INTRODUCTION 

As the fluctuation of oil price plays an important role in global political and economic situation, forecasting 

the price is significant. There are lots of methods to predict the oil price, such as regression, Kalman filter, 

x-11 etc. In this paper we suggested a method using the ideas of treating with missing data. Based on time 

series method we take the predicted values as missing values and the process of filling in missing data is 

predicting process. Firstly we fill the missing data (i.e. the predicted values in our models) using the 

methods such as EM algorithm, MCMC methods, or multiple imputation. In this way we get the complete 

data and establish time series model, then take the next predicted value as missing data, continue to fill 

in-model and to predict.  

We let 1 2 1, , ny y y   be the observed variables and ny  be predicted variable in predicting of world 

crude oil prices. We regarded 
1 2, , ny y y as a whole samples with missing variable ny

, and then use EM 

algorithm to fill in the value of ny
 which is predictive value. 

In section 2 we give the process of modeling the predicted model for missing data. In section 3 we give 

the conclusion. 
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THE ESTABLISHMENT OF THE PREDICTED MODEL FOR 

MISSING DATA 

1.  The Pretreatment of Data 

The analysis of predicted model for missing data is based on world crude oil weekly data from U.S. energy 

information administration, ranging from January 2009 to December 2010; we make statistical analysis 

using 104 data. Firstly, scatter plot of world crude oil weekly price is given (see figure 1). 

  
Figure 1 

Scatter Plot of World Crude Oil Weekly Price in 2009-2010 
 

Through the scatter plot, we can easily find that time series is not stable. So we should firstly implement 

difference on the series to get the first-order difference series graph (see figure 2). It can be observed by 

figure 2 that the first-order difference series is basically stable. 

 

  
Figure 2 

The First-order Difference Series Curve of World Crude Oil Price 
 

The above series graph is stable on visual judgment. The stability of time series is required  Otherwise, 

false regression will occur if economic models are based on non-stable time series. The table below 

displays the result of the ADF test on the first-order difference time series. So we can regard it as stable. 

Table 1 

ADF Test of Stability of World Crude Oil Weekly Prices 

  t-Statistic Prob 

ADF test statistic  -7.307233 0.0000 

Test critical values 1% level -3.497727  

 5% level -2.890926  

 10% level -2.582514  
 

When the series are stable the first-order difference time series can be fitted with AR (2) model. The 

table below (see table 2) shows the estimates of model parameters and the hypothesis testing status. 

 

Table 2 

AR (2) Model Parameter Estimates 

Paremeters Estimate  T-Value P-Value Order Number 

Constant 0.49365 1.86 0.0666 0 

First-Order Auto-Regressive Coefficient 0.33223 3.36 0.0011 1 

Second-Order Auto-Regressive Coefficient 0.21089 2.13 0.0353 2 
 

It can be seen from the table2 that all the p-value of test are smaller than 0.1 and the variants of models 

are significant under the significance level a = 0.1. 
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From the white noise residual test table below we can see the null hypothesis that the residuals are not 

relevant cannot be rejected by chi-square test. Therefore, AR(2) model is applicable for this series and we 

have no need to try more complex models. 

Table 3 

AR (2) Model of White Noise Residual Test 

Order number 
2 -value Freedom P-value 

6 3.57 4 0.4679 

12 6.55 10 0.7674 

18 12.10 16 0.7369 

24 21.68 22 0.4792 
 

2.  The Predicted Model for Missing Data 

The pretreatment of the world crude oil price in section 2.1 shows that AR (2) model is applicable for the 

time series. Therefore, further analysis on missing data can be proceed on AR (2) model in order to give 

more accurate predictions. 

We predict weekly world crude oil price of January 2011 and February 2011 using that of 2009 and 

2010. Firstly, we forecast the crude oil price of the first week of 2011, denoted by ny
. We 

regarded 1 1, , ,n ny y y as a whole sample while the missing value ny
 is estimated by EM algorithm. 

1ny  can be obtained after filling in ny
 and then based on  1 1, , ,n ny y y , 1ny   can be obtained as well. 

Replicate this process until the calculation of the eight week price for January and February 2011 are 

completed.  

For the second-order autoregressive AR (2) model 1 1 2 2 , 1, ,t t t ty y y t n        
  the 

parameter is 
2

1 2( , , , )    
 we suppose that 

2
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Ignoring the contribution of marginal distribution of y1,y2, the likelihood logarithm of complete data is  
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Against the data set 1 2{( , , ), 1, , }i i iy x x i n
, the model is equivalent to the likelihood of the normal 

linear regression. Let
( , )j kS S

is the sufficient statistics of complete data, and  

3 3
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n n
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i i
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We can have the maximum likelihood estimation of parameter : 
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The formula above using the sufficient statistics can be denoted as: 
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The Maximum likelihood of   can be estimated by EM algorithm. There are two iterative steps in EM 

algorithm: prediction step and estimate step. The first step is prediction step: Given an estimate of the 

unknown parameters to predict missing data in the sufficient statistics, the second step is estimate step: 

calculate the correct value of the likelihood estimate based on the sufficient statistics in prediction step. 

We denote the estimate of   for the t times’ iteration as: 
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M-step, take 
( )tS  estimated from E-step instead complete data sufficient statistics S, and then take into 

formula (4) we get 
( +1)t  
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Keep iterating E-step and M-step until the result satisfies the convergence requirement. And after 

convergence, we get the final predictive value ny
. 

 Using SAS software ,we analyze and model for the world's crude oil 2009-2010 Week prices, give the 

forecast 2011 1,2 months of oil prices. Model formula is  

1 21.15 1.31 -0.32t t ty y y    

After fitting the model, we get the forecast sequence of oil price, and residual series t , and do residual 

analysis. 

The curve and the correlation coefficient and partial correlation coefficient of series are show as figure 3  

 

Figure 3 

Residual Sequence Graph of Model Fitted by Missing Data Methods 

The figure 3 shows us that the residual series is independent. Serial correlation coefficient tends to 0 

very quickly, that is, it falls into the random interval, has no significant difference with 0, belong to white 

noise sequence. So the time series is stable and reliable.  

Furthermore, we take the white noise residuals test. 

Table 4 

White Noise Residual Test of Model Fitted by Missing Data Methods 

Order 2 -Value Freedom P-Value 

6 6.12 6 0.4101 

12 8.43 12 0.7511 

18 13.87 18 0.7375 

24 23.99 24 0.4619 

    

Chi-square test shows that we cannot reject the null hypothesis that residuals are Irrelevant. We have the 

residuals are white noise sequences.  According to the fitted model, we can get the predictive values of oil 

price. The following table gives comparison between the predicted value and actual value. At the same time, 

we use AR (2) model fitting model, and compare the accuracy of two forecasting methods. 

Table 5 

Comparison of Predictive and Actual Values of World Crude Oil Prices (USD / barrel) 2011.1-2011.2 

 

Date 
Actual 

Values 

Prediction of Missing Data Method AR（2）Model Prediction 

Prediction Absolute Error Prediction Absolute Error 

Jan 07， 2011 91.04 91.28 0.24 93.21 1.93 

Jan 14， 2011 92.60 92.30 0.30 91.59 0.71 

Jan 21， 2011 93.63 93.21 0.42 92.02 1.19 

Jan 28， 2011 92.18 94.26 2.08 92.52 1.74 

Feb 04， 2011 95.61 95.32 0.29 93.03 2.29 

Feb 11， 2011 96.25 96.46 0.21 93.53 2.93 

Feb 18， 2011 97.78 97.66 0.12 94.02 3.64 

Feb 25， 2011 103.54 98.92 4.62 94.51 4.41 
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From the table above we can see that the precision is higher if we predict using the method of missing 

data analysis. In the prediction process, because it is dynamic prediction for the model of sequence, except 

for the first prediction is the predictive value using the actual value of explanatory variables, every 

prediction behind is using recursive prediction method and putting the anterior value from dynamic element 

(Lagged explanatory variables) into the predictive formula to predict the value of next round. 

 

CONCLUSION 

In this paper we present the model of missing data prediction, which is to apply the method of missing data 

analysis to predict the price of petroleum. Regarding the petroleum prices of Jan. & Feb. 2011 which will be 

predicted as the special missing value, we model predictive model using EM algorithm, and then make 

prediction. We give the comparison between predictive values of oil price using missing data model and its 

real value, the result shows that the precision is rather higher if we predict by the method of missing data 

analysis. 

It should be pointed out that all the results above come from statistical models base on data analysis. 

However, the petroleum price is affected by the rapidly changing political and market economic 

information. Therefore, if we want to get even more comprehensive trend analysis, it should be built from 

the model based on the quantitative analysis, also combined with various influence factors of petroleum 

price changes, and then to get the much higher accurate results. 

Furthermore, predictive values is regarded as special missing data in this paper Once we cannot get the 

historical petroleum prices data, that is when historical missing data exist, we can also use the method 

above to fill in, and then to make the prediction. This cannot be achieved by any other predictive methods. 
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