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Abstract: Multiple image sensor data fusion is the combination of two or more images 

from different imaging sensors to improve the performance over each individual image 

sensor. This paper presents a new pixel-level method of data fusion from multiple image 

sensors for non-destructive inspection. With this method the images from different 

sensors were processed and classified using artificial neural networks. The classified 

images were then fused to produce a resultant image that categorized better than any of 

the individually classified images. This method was applied to identify the corrosive 

spots on the aircraft panel specimens. In this application, ultrasonic and eddy current 

image data ran though artificial neural network classifiers to identify the corroded spots 

on the same aircraft panel specimen as compared with the benchmark X-ray image. The 

result indicated that the image data fusion consistently enhanced artificial neural 

network corrosion detection with eddy current and ultrasonic image data individually in 

overall and in low corrosion pixels, which are 90 percent of all corrosion pixels, with the 

improvements over the artificial neural network classification rates of the eddy current 

image by 12.6% and 12.21% in average for low corrosion and overall corrosion 

classification, respectively, and over the artificial neural network classification rates of 

the ultrasonic image by 28.88% and 32.18% in average for low corrosion and overall 

corrosion classification, respectively. This pixel-level method for multiple imaging 

sensor data fusion is expected to solve problems of non-destructive inspection in various 

areas. 
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INTRODUCTION 

Studies have shown the capability of multiple imaging sensor data fusion to combine different images of 

the same object from different imaging sensors to produce a resultant image with improved visual 

perception and enhanced features for intelligent decision support (Blum and Liu, 2006). Multiple imaging 

sensor data fusion has been used in remote sensing (Pohl and Genderen, 1998), medicine (Laliberte et al., 

2003), military surveillance (Tsagaris and Anastassopoulos, 2005), agriculture (Leinonen and Jones, 2004), 

and human body detection (Han and Bhanu, 2007).  Available methods of multiple imaging sensor data 

fusion are at pixel level, feature level and symbolic level (Blum and Liu, 2006). Most research on multiple 

imaging sensor data fusion was actually at pixel level.  This paper presents a new method of data fusion 

from multiple imaging sensors at pixel level for Non-Destructive Inspection (NDI).  NDI is one of the 

major application areas of multisensor integration and data fusion (Gros, 1997).  For corrosion detection in 

aging aircraft panels, the NDI imaging methods, such as eddy current and ultrasound, were studied 

(Rebbapragada et al., 1999; 
 
Palakal et al., 2001). In order to increase the accuracy of the detection from an 

individual sensor, a NDI data fusion method was developed for study of aging aircraft structures (Forsyth et 

al., 2002). Although research and applications of NDI data fusion have been conducted in various areas, a 

general data fusion system model capable of handling various applications is very difficult, if not 

impossible, to design (Gros, 1997). Various data fusion models under the general concept are necessary for 

each specific area of research and application. The purpose of this research was to develop and apply a new 

method of data fusion from multiple imaging sensors through Artificial Neural Network (ANN) classifiers. 

The work was originated from and applied to NDI to identify the corroded spots on the aircraft panel 

specimens. The developed method is expected to have broad applications wherever multiple imaging 

sensors inspect the similar specimens. 

 

1.  MATERIALS AND METHODS 

1.1  Imaging Sensors and Images 

NDI is a method for materials characterization. There exists a wide range of non-destructive testing 

methods to help examine various problems and defects in different kinds of materials and under varying 

circumstances. Typical NDI methods include liquid penetrant, magnetic particle, eddy current and 

radiographic inspection, ultrasonic inspection, tomography, and real-time X-ray radiography. With the 

development of digital image processing technology, these NDI methods have been effectively and widely 

used in the materials industry. 

X-ray radiography is a costly NDI method used to inspect material and components with differential 

adsorption of penetrating radiation. Each specimen under evaluation absorbs different amount of radiation 

because each individual is different in density, thickness, shape, size, and even absorption characteristics. 

The unabsorbed radiation that passes through the specimen is recorded as the indication of internal and 

external conditions that appear as variants of black and white gray scale contrasts on exposed film, or 

variants of color on fluorescent screens. 

Eddy current is used to detect surface cracks, pits, subsurface cracks, corrosion on inner surfaces, and to 

determine alloy and heat-treat condition. With an eddy current instrument eddy currents are induced in a 

specimen when an alternating current, which is generated by the instrument, is applied to a test probe. The 

alternating current in the probe induces an alternating magnetic field in the article which causes eddy 

currents to flow in the specimen. Then, the instrument processes the signal acquired from the probe into the 

designated magnitude and format to display.  

Ultrasonic inspection is an acoustic method of NDI that uses sound energy moving through the 

specimen for detection of cracks and defects. Ultrasonic inspection instruments utilize ultrasound to 

examine the internal integrity of metals, plastics, and composite materials. The sound waves essentially 

"bounce-off" internal defects. The ultrasound transducer/receiver probe can be manually maneuvered. The 

probe is placed in contact with the part to be inspected with an oil or gel-layer acting as a carrier of the 
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acoustic signal. The probe is moved, and the acoustic response changes. The size and position of internal 

flaws can be determined by the height and position of the "peaks" observed on an image. 

This research used X-ray NDI image data as the benchmark and evaluated eddy current and ultrasonic 

NDI image data and the fusion of the data from the two different NDI imaging sensors in detection of 

corroded spots on the aircraft panel specimens. For this research, a total of 30 aircraft corrosion color 

bitmap images were obtained. Fifteen of them were eddy current images while another fifteen were 

ultrasonic images.  

1.2  Artificial Neural Networks 

An ANN is an information processing paradigm that is inspired by the behavior of biological nervous 

systems such as the human brain (McCulloch and Pitts, 1943; Hebb, 1949; Rosenblatt, 1958; Minsky and 

Papert, 1969; Grossberg, 1976; Hopfield, 1982). ANNs deduce the essential features of neurons and their 

interconnections using a computer program to simulate these features. In engineering, an artificial neuron is 

a unit that has multiple inputs and one output. The neuron functions both in training and testing. In training, 

the neuron is iteratively taught to fire or not fire for particular input patterns. In testing, when a trained or 

similar input pattern is detected by the neuron, the associated output will become the current output. In this 

way, like a human being, the neuron learns by example. An ANN is composed of a large number of highly 

interconnected neurons, information processing elements. These neurons work together to solve specific 

problems like a human brain does. 

ANNs learn by example and find the solution of the problems by themselves. Therefore, ANNs often 

outperform conventional statistical and mathematical methods in solving complex problems. ANNs have 

been widely used in pattern recognition and data classification for solving problems in engineering and 

scientific research. 

In order to accurately identify the corroded spots on the aircraft panels, ANN classifiers were developed. 

With the 30 eddy current and ultrasonic images, the ANN classifiers were trained to determine the ability to 

differentiate the corrosion data into two classes (threshold at 10% corrosion level), and to verify ANN 

classifiers with a real corrosion sample. The two-class classification of corrosion data is of industrial 

interest. It basically uses 10% corrosion level as the threshold to form a binary problem: yes or no, i.e. the 

corrosion level is either higher or lower than 10%. 

For ANN training, the RGB (Red-Green-Blue) values of the color images were converted into hue 

values. The converted hue matrices were used for the development of ANN classifiers. The feature vectors 

were formed by shifting a window across the hue matrices (Figure 1). The window shift starts column-wise 

by moving one column at a time. When the window moves over all the columns, it shifts down one row and 

goes back to the first few columns to start the next round column-wise shift. After continuing this process, 

the window will move over the entire image to extract image feature parameters. The size of the window 

can be changed to allow the ANN classifiers to differentiate the data at different resolutions. The feature 

vectors are the input to the ANN classifiers for ANN training, cross-validation, and testing. 

 

Figure 1 

Schematic of Window Shifting over the Image for Feature Extraction 
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Multilayer perceptrons (MLPs) were trained to classify the aircraft panel corrosion image data. MLPs 

are the most popular neural network architecture. They are layered feedforward networks training with the 

algorithm of backpropagation (Rumelhart et al., 1986). In this research, the MLPs with one hidden layer 

were used (Figure 2). 

 

Figure 2 

A MLP ANN with One Hidden Layer 

 

 

Figure 3 

Plot of Typical Training Error Curve and Cross-Validation Error Curve in ANN Training Process 

 

Typically, through training, ANNs may memorize individual exemplars rather than the trend(s) in the 

data set as a whole. This is so-called over-training. The over-trained ANNs typically pass by a point at 
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which the performance of the networks on new data starts to deteriorate. Cross-validation is an effective 

method to avoid over-training. With this method, a data set will be divided into three non-overlapped 

subsets: one for training, one for cross-validation and one for testing. The cross-validation subset is for 

training termination. In training computing, the cross-validation method monitors the error on a data set 

independent from the training data set in attempt to avoid over-training and terminate training when the 

error gets to the point at which the error begins to increase. The point is considered containing the settings 

and values of best generalization of ANN training. Figure 3 shows that with the method of cross-validation 

the training process can be terminated at an optimal point, t*, without over-training and save training time 

even though the training error still decreases. 

In order to quantify the classes of the aircraft panel corrosion image data after ANN training, the method 

of minimal distance, or norm, was used. This method looked for minimal geometric distance between the 

image feature vectors and the vectors representing the desired classes: 

 

Minimal_Distancei, j* = min (||Oi-Cj||)      (1 < i, j < n)   (1) 

||Oi-Cj|| = (<Oi-Cj, Oi-Cj>)
1/2

                  (2) 

 

where n is the number of classes of the ANN classifier. In this research n=2 (two classes); <a, b> 

represents the inner product of the vectors a and b; and Oi=[y1, y2, …, yi, …, yn]
T
 is the output vector from 

the ANN classifier representing that the i
th

 class is the desired class of the vector corresponding to the 

desired class vector Ci=[0, 0, …, 1, …, 0]
T
 in which the i

th
 element is 1 and the rest are zeros. 

In ANN training equations (1) and (2) are implemented. For each vector like Oi the distances between 

Oi and C1, C2, …, Ci, …, Cn are calculated. If the distance between Oi and Ci is minimal, i.e. j*=i in 

equation (1), the output vector Oi is correctly classified; otherwise it is misclassified. 

1.3  Imaging Sensor Data Fusion 

Based on the classification of aircraft panel corrosion image data from two different NDI image sensors 

through ANN classifiers, the integration or fusion of the classified results has potential to overcome the 

limit of an individual image sensor and to have more accurate quantification of the data classification. 

In general, the method of multiple image sensor data fusion can be established with two merge functions: 

merge of classification signature matrices and merge of outputs of ANN classifiers for different image 

sensors to the same specimen. By the two merge functions, the fused result should be better than the one 

from an individual image sensor since the fused one integrates what any individual captured. 

Each of the NDI images, as the input to the ANN classifiers, contains two types of pixels: non-zero 

pixels representing the degree of corrosion with their values and zero pixels representing no corrosion with 

0. The non-zero pixels are included in the image ROI (Region of Interest). The zero pixels are excluded 

from the image ROI. Therefore, in feature extraction from each image, the windowed extraction process 

should be monitored to skip the window(s) containing many more zero-value pixels than the ROI pixels, i.e. 

non-zero pixels in the window(s). By doing so, a signature matrix can be generated after window scanning 

over the image to indicate what each of the pixels is: 

 

S=[sij]  (1<i<i_row; 1<j<i_col)                 (3) 

sij=0 or 1 or 2      (4) 

 

where i_row is the number of image rows; and i_col is the number of image columns. In the two 

equations, sij=0 indicates that the corresponding pixel, i.e. the pixel (i, j), in the image shows no corrosion. 

sij=1 indicates that the corresponding pixel in the image shows a certain degree of corrosion, but this pixel 

will be excluded from the ANN classification since in image feature extraction the window containing this 

pixel is skipped. sij=2 indicates that the corresponding pixel in the image also shows a certain degree of 
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corrosion, and this pixel will be included in the ANN classification since the window containing this pixel 

is included to form an image feature vector as the ANN input. 

Each image from an image sensor produces a signature matrix from image feature extraction. If one 

supposes that there are L images from L different image sensors,  then, the L images will produce L 

signature matrices after image feature extraction: S
1
, S

2
, …, S

L
. In order to conduct data fusion from 

different image sensors, these signature matrices should be merged: 

 

M=[mij]           (5) 

mij=0 or 1 or 2   (6) 

as 

mij=0 when all s
k
ij=0   (7) 

mij=1 when s
k
ij=0 and 1  (8) 

mij=2 when at least a s
k
ij=2  (9) 

where k=1, 2, …, L. 

An ANN classifier is developed for each image from each of the image sensors. The outputs of the ANN 

classifiers should be merged to fuse the data from different image sensors. If one supposes that O
j
1, O

j
2, …, 

O
j
N (j=1, 2, …, L) are the output vectors of the ANN classifier for image sensor j, then the outputs of the L 

ANN classifiers should be in the form: 

O
f
i=



L

1j

i
j

jc O           (10) 

where N is the sample size; and c1, c2, …, cL are the output merge coefficients which can be determined 

by assigning values or optimization. 

In general, the image ROIs vary from sensor to sensor even when they visualize the same specimen. 

Therefore, in general, the sequential relationship of image feature vectors from different image sensors is 

different. When merging the outputs of the ANN classifiers, the sequential relationship between the outputs 

of the ANN classifiers of different image sensors has to match. The signature matrices are useful to help 

find the match of the sequential relationship. 

With the method of image sensor data fusion as described above, a general procedure of data fusion for 

L images from L image sensors respectively can be formulated as follows: 

1. For each image from an image sensor, specify the size of window and perform image feature 

extraction by window scanning over the image to produce two sets of matrix data related to the 

image: feature vectors and a signature matrix; 

2. Generate the output vectors with the input of the image feature vectors through the ANN classifier; 

3. Produce the classified image by data post-processing of ANN classification; 

4. Merge the output vectors of the L ANN classifiers with corresponding signature matrices; 

5. Produce the final classified image by data fusion. 

The flowchart of this procedure is shown in Figure 4. This is a generic procedure. Specifically for NDI 

aircraft panel corrosion in this research, we focused on the data fusion of two NDI image sensors, eddy 

current and ultrasound with L=2. 

In this research image processing including window shifting in generating feature vectors and signature 

matrices and classification post-processing including generation of classified images, merge of output 

vectors of ANN classifiers and generation of the final classified image of data fusion were programmed 

with Borland C++ 5.0 (Borland, Austin, Texas). Training, validation and testing of ANN classifiers were 

conducted with NeuroSolutions 4.0 (NeuroDimension, Inc., Gainesville, Florada). 
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Figure 4 

Flowchart of the Procedure of Data Fusion 
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2.  RESULTS AND DISCUSSION 

One-layer MLPs were trained, cross-validated, and tested to develop ANN classifiers for aircraft panel 

corrosion image data. For classification, the input vectors were generated by shifting non-overlapped 

square windows over the images. The sizes of the square windows were from 2 x 2 to 12 x 12. 

Before ANN training, the fifteen hue matrices from eddy current images and ultrasonic images 

respectively were evaluated statistically in terms of the two classes. In order to preserve the statistical 

variation over the hue matrices in each class, the pixel values from the non-overlapped square windows 

were used directly as the values of the feature parameters.  

After ANN classifiers were trained, validated and tested, they were verified with an eddy current image 

and an ultrasonic image. After image processing, both images showed blank areas that represented no 

corrosion. In order to remove the impact of the blank areas in image feature extraction, a procedure was 

established to produce a feature vector from a window only when the window contains more than a part of 

non-zero pixels. In producing the feature vector the zero pixels were reassigned the value of the mean of the 

non-zero pixel values of the window. The part of non-zero pixels in the window was defined as 

thresholding value. In the verification it was found that the larger the feature window size, the more 

non-zero pixels were unexpectedly filtered out. Therefore, the thresholding value could be set with the 

increase of the window size, for example, for window size 2 x 2, the threshold was ¼; for the window 5 x 5 

or 6 x 6, the value could be 7/8; and for the window 10 x 10 or 12 x 12, the value could be 15/16. 

The data fusion to merge the data from image processing and ANN binary classification originated from 

two NDI image sensors: eddy current and ultrasound. The two different NDI images visualized the same 

area of an aircraft panel corrosion specimen. A NDI X-ray image that visualized the same area as the two 

images did was used as the benchmark to evaluate the performance of each of the image classification and 

data fusion. Table 1 shows the pixel distribution over the X-ray image. From the table it can be derived that 

2.78% of the pixels in the image ROI represent low corrosion (<10%) while 0.28% of the ROI pixels 

represent high corrosion (>10%), which means that about 90% corrosion pixels in the image ROI represent 

low corrosion. 

Table 1 

Pixel Distribution over the X-Ray Image for Binary Classification 

 Number Percentage 

Number of Non-Corrosion Pixels in the Image 226,548 96.94% 

Number of Low Corrosion (<10%) Pixels in the Image 6,501 2.78% 

Number of High Corrosion (>10%) Pixels in the Image 660 0.28% 

Total 233,709 100% 

 

In data fusion, the window size of image feature extraction was incremented from 2 x 2 to 12 x 12. 

Therefore, the data fusion can be technically described as the merge of the two class eddy current and 

ultrasonic corrosion image data of ANN classifiers in a multi-resolution feature extraction. 

The features from the eddy current corrosion image and the ultrasonic corrosion image were extracted 

with the increment of window size from 2 x 2 to 12 x 12 for ANN binary classification. The extracted 

feature vectors were used to go through two developed ANN classifiers at different window sizes. At each 

window size, the outputs of the two ANN classifiers were merged and then a new classified image was 

produced with the merged signature matrix. The new classified image was the result of data fusion of eddy 

current and ultrasonic images. The performance was evaluated by comparing the class signature in 

classified images with the corrosion signature in the processed X-ray corrosion image pixel by pixel. 

Figure 5 shows all classified images of eddy current, ultrasound and data fusion at different window 

sizes in image feature extraction. Figure 6 and Figure 7 show the plots of the classification rates of the eddy 

current image, the ultrasound image and image data fusion of high and low corrosions respectively. From 

the images and plots in the figures, it can be found that the eddy current data could consistently be classified 

to detect both high and low corrosions but the classification could indicate clearly the pattern of spot welds 

in the area of the corrosion specimen although many pixels in the eddy current image were misclassified. It 
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is also found that the ultrasonic data could only be consistently classified to detect low corrosion and the 

classification could indicate clearly the pattern of rivets and spot welds in the corrosion specimen; many 

pixels in the ultrasonic image were misclassified at the same time. Also many other pixels were skipped due 

to window shifting over the images in feature extraction. The figures also show that the data fusion 

consistently enhanced the ANN classifications and presented a better match with the X-ray corrosion image 

in detection of low and visualization of patterns in the corrosion specimen.  

 

Figure 5 

Binary ANN Classified and Data Fusion Images at Different Window Sizes of Image Feature 

Extraction  
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Figure 6 

Plots of Classification Rates of Eddy Current Image, Ultrasound Image and Image Data Fusion of 

Low Corrosion 

 

 

Figure 7 

Plots of Classification Rates of Eddy Current Image, Ultrasound Image and Image Data Fusion of 

High Corrosion 

 

Figure 8 shows the plots of the classification rates of the eddy current image, the ultrasound image and 

image data fusion combining high and low corrosions together. The plots in the figure indicate that the data 
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fusion consistently enhances the ANN corrosion classifications with eddy current and ultrasonic data in the 

combined classifications with incremented window sizes from 2 x 2 to 12 x 12 in image feature extraction.  

 

Figure 8 

Plots of Classification Rates of Eddy Current Image, Ultrasound Image and Image Data Fusion of 

All Corrosions 

 

Table 2 

Percent Improvement of Binary ANN Corrosion Classifications of Eddy Current and Ultrasonic 

Images and Data Fusion at Different Window Sizes for Image Feature Extraction 

Window Size Low Corrosion Classification Overall Classification 

Data Fusion  

over  

Eddy Current 

Data Fusion 

over 

Ultrasound 

Data Fusion  

over  

Eddy Current 

Data Fusion over 

Ultrasound 

2 x 2 13.95% 25.13% 13.50% 29.40% 

3 x 3 14.49% 26.98% 13.72% 30.86% 

4 x 4 13.83% 24.44% 13.44% 28.93% 

5 x 5 12.67% 25.76% 12.27% 29.58% 

6 x 6 18.71% 32.62% 17.46% 35.53% 

7 x 7 11.07% 30.00% 10.88% 32.22% 

8 x 8 11.10% 31.67% 11.03% 34.47% 

9 x 9 12.83% 32.78% 12.12% 35.82% 

10 x 10 9.58% 28.95% 9.92% 31.59% 

11 x 11 11.09% 30.63% 10.77% 33.83% 

12 x 12 9.27% 28.75% 9.21% 31.76% 

Average 12.60% 28.88% 12.21% 32.18% 

 

In summary (Table 2), image data fusion improved the ANN classification rates of the eddy current 

image by 12.6% and 12.21% in average for low corrosion and overall corrosion classification respectively, 

and it improved the ANN classification rates of the ultrasonic image by 28.88% and 32.18% in average for 

low corrosion and overall corrosion classification respectively. 
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CONCLUSIONS 

This research has developed a method of data fusion of ANN classification from multiple image sensors for 

NDI. With the method, data fusion was implemented over ANN classifications of eddy current and 

ultrasonic images compared with X-ray benchmark image for detection of aircraft panel corrosion. The 

results have proven that the method is effective and data fusion is very promising in enhancement of 

individual classifications from different image sensors for corrosion NDI. Original eddy current and 

ultrasonic image ROIs were limited in characterization of aircraft panel corrosion. Data fusion classified 

consistently better in overall and low corrosion pixels, which are 90% of all corrosion pixels. It certainly 

performed better with a high performance configuration of image sensors, image processing, image feature 

extraction, and ANN image classification. 

 

DISCLAIMER 

Mention of trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the 

product by the USDA and does not imply its approval to the exclusion of other products that may also be 

suitable. 
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