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Abstract

Let G = (¥, E) be a simple connected graph with V' (G) =
{vi, v, =+, v,} and degree sequence d,, d,, ***, d,. Denote
1,(i) = z b (), my (i) = e (.l), where & is a positive

(eE £, (D)

integer number and v,E€ V(G) and note that £,(i)=d,. Let
p(G) be the largest eigenvalue of adjacent matrix of G. In
this paper, we present sharp upper and lower bounds of
p(G) in terms of m,(i) (see theorem (2.1)). From which,
we can obtain some known results, and our result is better
than other results in some case.
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INTRODUCTION

Let G = (V, E) be a connected graph without loops and
multiedges and vertex set V'={v,, v, -**, v,}. The degree d,
of a vertex v;in the graph G is defined to be the number of
edges in G adjacent to v;. For v,€ V(G), N(v;) denotes the
neighbors of v, . The 2-degree of v; (Brualdi & Hoffman,
1985) is the sum of the degrees of the vertices adjacent
to v; and denoted by ¢, ,and the average-degree of v, is

l;
m; = R Here we define

i

1

tk+1 (l)
AU
where £ is a positive integer number. Note that
to()=d,, my(iy=m.

Let A(G) = (a,), a,;=1 if (v,v)EE and a,;=0 otherwise
be the adjacency matrix of G . It follows immediately
that if G is a simple graph, then 4A(G) is a symmetric (0,
1) matrix in which every diagonal entry is zero. Since
A(G) is real and symmetric, its eigenvalues are real.
The spectral radius of G, denoted by p(G), is the largest
eigenvalue of A(G). Note that if G is connected, then
A(G) is irreducible, and so by the PerronFrobenius theory
of non-negative matrices, p(G) has multiplicity one and
there exists a unique positive unit eigenvector (also called
Perron-eigenvector) corresponding to p(G).

Up to now, many bounds for p(G) were given .For
example, Kinkar Ch.Das and Pawan Kumar (Das &
Kumar, 2004) gave a bound of spectral radius for graphs:

min{,/mm, :ij€ E} < p(G) Smax{,/mm, :ijj€ E}, (1)
where m; is the average degree of v,, Moreover, the
equality holds if and only if G is either a graph with all the
vertices of equal average degree or a bipartite graph with
vertices of same set having equal average degree.

In this paper, we will generalize the Kinkar Ch.Das
and Pawan Kumar's bound and obtain the upper and
lower bounds on p(G) in terms of m,(i). From which, we
can obtain some known results (for example (1)). We will
give an example to show that our result is better than the
bound (1) in some case.

Now we introduce some lemmas which will be used
later on.

Lemma 1.1 (Horn & Johnson,1985). Let A be a
nonnegative matrix of order n. R; be the ith row sum of A.
Then

min{R;: 1 <i<n} <p(4) <max{R;: 1 <i<n}.

If A is irreducible, then each equality holds if and only

L) = z L ())sm (D) =

(Vth)EE
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if R=R,=-"=R,.

Lemma 1.2 Let G be a bipartite graph with bipartition
V=UU W and m(i)=a for v;€ U, m(j)=p for v;EW,
Then, p(G)= W

Proof. Let A be the adjacency matrix of G. Obviously,
p(G) is the spectral radius of the matrix M=K"'(D"'4D)K
too, where D=diag #,(1),(2), ", t(n), K =diag(k,,k,,k,),

k,=~o when v,€ U and kiz\/ﬁwhen v,EW, 1 <
< n. Then (i, j)th element of the matrix M is equal to

JEMQ
a t.(i)
JEMQ

B t.()

0 otherwise.

if(v,.,vj e E),v,eU,;

if(v,v,€ E),v,e W,

So each row sum of the matrix M is equal to /o3 .
Thus, by Lemma 1.1, we have p(G) =+/af3.

THE BOUNDS OF SPECTRAL RADIUS
Theorem 2.1 Let G be a connected graph. Then

min{\/m, (H)m,(j) :(v,,v,) € E} < p(G) < max

Wm (Dm (j) 2 (v;,v;) € E}. 2

Moveover, either of equality holds for a particular value
of k if and only if m,(1)=m,(2)="--my(n) or G is a bipartite

graph with the partition vV, Vi U {an+1 vV, )

and m(1)=m(2)="--my(n,), m(n;t1)="-my(n).

Proof. It is easy to see that the proof of lower bound is
similar as the upper bound, so we only give the proof of
upper bound. Let D = diag £,(1),£(2), *,t,(n). Obviously,
D'AD and A have the same spectral radius. Let X=(x,,
X5, X,)  be an eigenvector of D'AD corresponding to
the spectral radius p(G). Let one eigencomponent (say x,)
be equal to 1 and the other eigencomponents be less than
or equal to 1, that is, x, = 1, and 0 < x, < 1 for all k. Let
xX,=max {x,:(v,,v,) € E}>max{x.(v;, v) EE} when x, = 1.

.. | . ZLk (.]) .
Now the (7, j)th element of D" AD is ) ,if (v;, V) EE,
j «
k
and 0 otherwise.
We have
D'ADX=p(G)X. (3)
From the first equation of (3), we have
4()x
PxX = z ‘ 1 -
(vl,vj)eE tk( )
psm(1)x, . 4
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From the second equation of (3), we have

Z L, (J)x,

px; = ,
(vz,vl-)eE tk (2)
px,<my(2). (5)

From (4) and (5), we get

P <my(Hymy(2).
Therefore,

p* < Jm, (Om,(2) .

Hence,

P(G) < max{ym, (Ym, () : (v,,v,)€ E}.

Now suppose that the equality in (2) holds. Then all
inequalities in the above argument must be equalities. In
particular, we have from (4) that x=x, for all k, (v, v)) EE,
also from (5) that x=x,=1 for all &, (v,, v) EE. Now we
distinguish two cases bellow:

Case (i): x,=1. Let V,={kix,=1}. If V£V, there exist

vertices ¥, p€ V,,q &V, such that (v, v,)EE, and (v,

v,) E E. since G is connected, so x,=x,=x,=1.
From the r-th equation of (3), we have

t.(j)x,
Z () i< ().
1,(r)
From the p-th equation of (3), we have
L())x;
px,= Y, ———=
(vp,vj)EE tk(p)

So we have P(G) <\m.(r)m.(p) which contradicts
that the equality holds in (2). Thus V=V and m,(1)=m,(2)=
my(n)=p.

Case (ii): x2<1. We have x,=1, v;€EN(v,) and
V;=X,, V;EN(v,). Let U={k:x;=1}and W={k:x;=x,}, so
N(v,)cW,and N(v,) CU. Further, for any vertex
v, EN(N(v))), there exists a vertex v,€ N(v,), such that
v,v,€E and v,v,€E, therefore x,=x,. From the p-th

px, =

(v, 0, ) E

<m(p) .

equation of (3), we have

tk (j)x/
px,= Y Sl <m(p)
’ (vp,vj)EE tk (p) g

Using (4), we get

p2 <m (1)m(p),
since we have

p(G) =max{ym ()m,(j) : (v;,v,) € E} 2 \m,()m,(p).
so P(G) <+/m, (r)m, (p), which shows that x,=1. hence
N(N(v,)) cU . By a similar argument, we can show that
N(N(v,)) W . Continuing the procedure, it is easy to

see, since G is connected, that = U U W and that the
subgraphs induced by U and W, respectively, are empty



graphs. Hence G is bipartite and m,(i) are the same for
v, € U, mk(j) are the same for v,E W.

Conversely, if G is a graph with m,(1)=m(2)="--m(n),
then the equality in (2) is satisfied. Let G be a bipartite
graph with bipartition V= U U W and m(i)=a for v,€E U,
my(j)=p for v, W. Then, by lemma 1.2,

p(G) =Jof =max{\fm (iym,(j): (v,,v)) € E}.

we complete the proof.

Note 2.2 If'k = 0, then the inequality (2) is the Kinkar
Ch.Das and Pawan Kumar's bound (1). Here we give an
example to show that (2) is better than the Kinkar Ch.Das
and Pawan Kumar”s bound in some case. Let G be a graph
shown in Figure 1. Then the bound (2) is 2.52 <p(G) <2.67
when k =1, and Kinkar Ch.Das and Pawan Kumar’s bound
is 2.49 < p(G) < 2.83. Thus in that case , (2) is better than
the Kinkar Ch.Das and Pawan Kumar”s bound.
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Consequently, from (2) we have the following results.

Corollary 2.3 Let G be a simple connected graph.
Then

min{my(i):i €V} < p(G)<max{m(i):iEV}. (6)

Moveover, equality holds for a particular value of k if
and only if m(1)=my(2)="-myn).

Note 2.4 [f k=0, then the inequality (6) is the
Favaron et.al., s bound (Favaron, Maheo, & Sacle, 1993,
p-193).

Corollary 2.5 (a) Let G be a graph with m,(v)=p. For
each vE V(G), then p(G)=p.

(b) Let G be a bipartite graph with the bipartition (X,
Y). If mi(v)=p, for each vE X and m(v)=p,. For eachvEY,

then P(G)=,/p.p, .
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