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Abstract 
This paper discovered a phenomenon in which the mass 
point in unit cell cannot keep balance in current elastic 
theory. Under different stress states, the absolute values 
of all equilibrium stress on the mass point are greater than 
the absolute values of principal stress. Thus, based on new 
concept of point stress balance, this paper introduces the 
new formula of stretch-shear combined deformation. The 
new formula explains the issue that, in the state of stretch-
shear, constructions destroy more easily than in the state 
of compress-shear. Besides, based on new concepts of 
point stress balance, this paper also establishes a new 
theory of strength that is much more accurate than the 
third and fourth strength theory, validated in the Damage 
Mechanics National Key Laboratory of Tsinghua 
University. Comparisons of experiment data show the 
errors calculated from the new theory are only 1%, while 
errors based on the third and fourth strength theory are 
14.2% and 18.2%. Therefore, the author suggests using 
the new stretch-shear formula to solve problems in bridge 
engineering in the future.
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INTRODUCTION
With the development of the country, more and more 
roads and bridges are constructed. Unfortunately，
there are endless numbers of bridges collapsing as well. 
Previously, quality was thought to be the main cause of 
the incidents. The incidents were also associated with 
defects and errors in the elastic theory itself. As new 
theory points out, the balance of the principal element 
cannot guarantee the balance of its particles, when the 
particles are balanced, stress should be greater than the 
principal stress of element balance (extreme stress). 
Tensile, shear and deduces the conditions of the new state 

of plane stress strength formula: 2 2' 2 2σ σ στ τ= + + .

The combined strength formula is more accurate 
and precise than the second and the third strength 
theory formulas. The Damage Mechanics National Key 
Laboratory of Tsinghua University has validated this 
theory. Especially the present elasticity theory: “Role in 
the torque limit on unit area (moment) should be constant 
zero” and should “the non-zero point force moment 
elasticity theory demonstrates the moment to non-zero”. 
Shear stress distribution within the beam is deduced 
with classical theory is completely different, especially 
the point of maximum shear stress, the classic theory of 
shear stress on the neutral axis; under the new theory on 
the beam, the largest stress. In the beam, the beam of the 
maximum normal stress and surface area, Description on 
the beam, the points on the surface is tensile, shear plane 
stress state; description on the beam, the points on the 
surface is tensile, shear plane stress state; the classical 
theory of normal stress and shear stress is not the same 
point. Therefore, the present design of the beam is carried 
out by one-way maximum stress. In order to ensure the 
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safety of the beam, the design of new combination tensile, 
shear strength formula must be adopted.

1.  STRAIGHTUNIAXIALLY STRETCHED 
ETC. OBLIQUE CROSS SECTION OF 
A PARTICLE CANNOT BALANCE THE 
CONTRADICTION

1.1  Such As Rods Stretching From Any Point 
on the Inclined Section of the Normal Stress and 
Shear Stress (Liu, 2000)
Such as, rods stretching shown in Figure 1 (a). As is 
known to all, any particle in the rod is the equal and 

opposite direction of tensile stress in balance, but the 
current theory of elasticity cannot make particles inside 
the rod be in equilibrium.

A rod axial tension for F, Cross section area of A, the 
normal stress in the cross section is σ0

	 	 	 	 σ0 = FA  . (1)

And on cant k – k (An angle and vertical direction is α) 
any point of normal stress σα and shear stress τα for
	 	 	 σα = Pa cos α	=	σ0 cos2α	,	 (2)
  0

0sin cos sin sin 2
2

Pα α
σ

τ α σ α α α= = =  . (3)
Note: type (2) and type (3) keep balance with the left 

section of the stem of normal stress and shear stress; it is 
not the balance of a particle in section k - k stress.

Figure 1
Straight Rod Stretching, Etc.

1.2  The Difference Between the Unit Body Balance 
and Balance of Particles
An important conclusion: The balance of the elements of 
stress by area of force balance. The particle balance only 
stress balance does not need to use stress by the area to 
get the force to balance because, the concept of particle 
is a point of quality. The point not size; if consider area 
is also any point, on any hand, the area is equal, it can be 
canceled in the balance equation. Therefore, the important 
distinction between the particle and the cell body balance 
with the role of stress in the particle.

1.3  Inference
Figure 1 shows straight rod stretching inclined section of 
any interception, namely Angle α can from 0° to the 180°. 
Any point in this way can put the rods in the point of the 
slope as a unit cell, therefore, can draw important corollary: 
any particles on the balance of the unit cell balance under the 
action of stress in unit cell is not in balance.

1.4  Keep the Balance of Particles Straight Rod 
Stretching on the Inclined Section, Such as the 
Normal Stress and Shear Stress
To ensure the slope k - k a particle of a balance, must make 
σ0left = σ0right, (d) is shown in Figure 1. It is an obvious 
conclusion: Simple tension as straight rod inside is affected 

by the stress of equal and opposite in balance. A point not 
be caused artificially in a k - k inclined section and not in a 
state of balance (this section is k - k line point). Cant point 
to balance on k - k must by forcing analysis method, namely
	 	 	 	 σα' = σ0 cos α	,	 (2¢)
	 	 	 	 τα' = σ0 sin α	.	 (3¢)
Type (2¢) type (3¢) are to ensure tensile body at any 

cross section on particle balance stress, because
 2 2 2 2

0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +

.
Show a left and right by the size of particles is equal 

and opposite stress and in balance.
Contrast type (2) type (2¢) is:σα'>σα; Contrast (3¢) type 

(3) is: τα'>τα. This shows that the unit cell balance stress is 
less than the balance of particles on the stress.

2.  UNIT BODY UNDER THE STATE OF 
PLANE STRESS EQUILIBRIUM AND 
BALANCE OF PARTICLES

2.1  In Both Directions Stretch the Particle 
Balance Stress and Shear Stress Condition
In both directions the tensile and shear stress state, the 
balance inclined section is deduced by the unit cell as 
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a normal stress formula (Zhao et al., 2002; Fan & Yin, 
2005),  for

 

 2 2 2 2
0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +

 . (4) 

Main stress formula on its main plane (Zhao et al., 
2002; Fan & Yin, 2005) for

 

 2 2 2 2
0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +

 . (5)

When σx	=	σy	=	σ.
Type (5) for
	 	 	 σ1 = σmax = σ	+	τ	,	 (6)
	 	 	 σ3 = σmin = σ	-	τ	.	 (6)*
As shown in Figure 2(a) for normal stress and shear 

stress under the effect of both directions to the tensile and 
shear stress state.

The stress of the particle a as shown in Figure 2(b), by 
the resultant force for projection

 2 2 2 2
0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +

 .

The particle stress balance for
 

 2 2 2 2
0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +

 . (7)*
Type (8) is both directions to the stress state of particle 

balance stress.

Figure 2
The State of Balance About Both Directions to Tensile 
and Shear Stress of Particle for a. (a) Both Directions 
to the Stress State, (b) Force Diagram of Particle a

When σx	=	σy	=	σ, from type (8) for the both directions 
of particles under tensile stress and shear stress state, such 
as balance stress

    

 2 2 2 2
0right 0 0 0left( ) ( ) ( cos ) ( sin )α ασ σ τ σ α σ α σ′ ′= + = + =

 
cos 2 sin 2

2 2
x y x y

xα

σ σ σ σ
σ α τ α

+ −
= + −

 1 max 2 2

2 min

( )
2 2

x y x y
x

σ σ σ σσ σ
τ

σ σ
+ −= 

= ± += 

 x

y

x

y

σ τ

σ τ

= +

= +

∑
∑

 2 2 2 2( ) ( ) ( ) ( )a x yx yσ σ τ σ τ′ = + = + + +∑ ∑

 2( )aσ σ τ′ = +  . (8)

Type (6) and type (9) compared to know: Unit body 
principal stress is less than the particle balance stress, 
Under plane stress state, the particle balance stress is 
the main unit body stress maxima of the  2

 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 Times. This 
shows that the main stress is not extreme stress, particle 
balance stress is extreme stress.

2.2  New Tensile Stress Are Exported Through 
the Particle Balance - Combinations of Shear 
Deformation Formula
When σy = 0 By type (10)*, Particle stress balance for 2

 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 ,        (10)*

type (10) * is a combination of tensile and shear 
deformation of particle balance under stress.

Condition is established using particle balance stress 
intensity (Han & Huang, 2013). 

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 . (11) *
In type: [σ] is allowable tensile stress.
New strength formula (11)* is different from the third 

and fourth strength theory derived from the cell body 
balance formula (Fan, 2005; Shan, 2007).

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 , (12)

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 . (13)
In type [s ] is material allowable tensile stress.
New stretch - Cut combined deformation formula 

conform to the yield phenomenon of combination formula 
(Han & Huang, 2013).

When there is no tensile stress,σy = 0, Is the pure shear 
stress state, The type (11)*, (12), (13) is simplified to 
respectively

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

,

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

,

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

.
When the safety coefficient 1, [s] is the yield limit σs, 

Can be calculated to yield the relationship between shear 
stress τs and the yield limit σs

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 , (14)

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °

 , (15)

  

 2
 2 2 2 2( ) 2 2a x x xσ σ τ τ σ σ τ τ′ = + + = + +

 [ ]2 22 2σ στ τ σ+ + ≤

 [ ]2 24σ τ σ+ ≤

 [ ]2 23σ τ σ+ ≤

 [ ]2τ σ≤

 [ ]2τ σ≤

 [ ]3τ σ≤

 2 sin 45
2s s sτ σ σ′ = = °

 
3

1 sin 30
2s s sτ σ σ= = °

 
4

3 sin 35
3s s sτ σ σ= = °  . (16)

In type (14), (15), (16) σs',σs3,σs4 respectively particle 
balance stress, under the third and fourth strength theory, 
yield shear stress.

The above three types explained the relationship 
between the yield tensile stress and yields shear stress. 
The result of type (14) has the same experimental 
conclusion compared with the low carbon steel tensile, 
mild steel. Tensile experiment showed that tensile in 45° 
yield slip line (Zhang & Wang, 2008; Mott, 2005). The 
type (15) type (16) shows that low carbon steel tensile 
should be seen in 35° and 30° slip, but is in fact not the 
case. It proves the correctness of the formula (11)* that 
the combination of the strength was reduced through the 
particle balance.

Compression of brittle materials such as cast iron, its 
fractured surface, with the axis of around 45° Angle is 
the maximum shear stress damage, and a new formula to 
calculate the maximum shear stress occurred in 45° are 
the same. While the third and the fourth strength theory to 
calculate the maximum shear stress respectively occurred 
in 30°, 35°, but the result is not the case.
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2.3  The New Formula Satisfactory Explanation 
Tensile-Shear Test Is Easy to Destroy the 
Phenomenon of Shear-Compression Ratio
Experimental results show that the tensile - shear is 
easier than compression - shear. This phenomenon can be 
satisfactorily explained with particle equilibrium stress 
formula (12)* : Because the formula (12), and Tensile 
stress has a non-square items 2τσ (Zhao, Zhang, & Wang, 
2002), When σ is negative values, σa' Less than a,which 
stress makes it difficult to cut the time for positives σa'. 
However，either tension or compression for positive 
stress σ in the formula (14) and (15), σ2is positive, 
its stress is quite equal and you cannot explain this 
phenomenon. Mohr’s strength theory cannot reasonably 

explain, with only tensile strength of the material, ranging 
from pressures to explain this phenomenon, an equal 
tensile and compressive strength of the material.

2.4 New Tension-Shear Strength Formula 
Combined Deformation Experiments
In order to verify that the new tension-shear deformation 
correctness intensity formula combination, with 
the ultimate strength of the plastic PVC, Tsinghua 
University, State Key Laboratory of damage mechanics, 
did a stretch-combined strength of shear fracture tests 
(Han & Huang, 2013), put comparison of experimental 
data and error for the three theories of fracture stress, 
reproduced below:

Table 1
Comparison of Stress Fracture Table Under the Third, Fourth Intensity Particle Equilibrium Conditions and 
Conditions of Stress Intensity (Han & Huang, 2013)

     Project

No.

Tensile stress
σx(MPa)

Shearing stress 
τy (MPa)

The third strength 
theory  2 2

3 4rσ σ τ= +

 2 2
4 3rσ σ τ= +

 2 22 2στσ σ στ τ′ = + +

(MPa)

The fourth strength 
theory 

 2 2
3 4rσ σ τ= +

 2 2
4 3rσ σ τ= +

 2 22 2στσ σ στ τ′ = + +
(MPa)

Particle equilibrium 
stressStrength theory 

 2 2
3 4rσ σ τ= +

 2 2
4 3rσ σ τ= +

 2 22 2στσ σ στ τ′ = + +

(MPa)

Ultimate 
Tensile 

Strength σb 
(MPa)

1 26.6 7.5 30.6 29.6 40.2 43

2 28.6 12 37 35 42.1 43

3 32.4 9.4 37.5 36.3 42.6 43

4 30.1 15 42.5 39.8 45.1 43

The average 36.9 35.2 42.5 43

Fracture stress and intensity
Limit percentage error

 100%b r

b

i σ σ
σ
−

= ×

 
max

3 1.5
2

sF
A

τ τ= =

 ' s

z

F y
S

τ = −

 
max

2' 2sF
bh

τ τ= =

14.2% 18.2% 1%

Seen from the table: The fracture strength of the 
material conditions of stress and particle balance resulting 
tensile stress strength limit error of only 1%. It proved 
the correctness and accuracy of the new formula. The 
theory of the third and fourth strength error up to 14.2% 
and 18.2%. It described that major projects designed by 
the classical theory of elasticity, especially for bridge, is 
less safe and it is the main reason for collapse and fracture 
accident.

3.  SHEAR STRESS DISTRIBUTION OF 
THE NEW THEORY AND THE CLASSICAL 
THEORY OF THE BEAM CROSS-SECTION
Current elasticity theory is deduced on the transverse 
cross-section rectangular beam maximum shear stress 
(Mott, 200; Qian & Ye, 1956; Huang, 1982)

  

 100%b r

b

i σ σ
σ
−

= ×

 
max

3 1.5
2

sF
A

τ τ= =

 ' s

z

F y
S

τ = −

 
max

2' 2sF
bh

τ τ= =

. (17)

In type: On cross-section of the shear. A of the cross-
sectional area. τ- of the average shear stress.

Note that the maximum shears stress on the neutral 
axis (y = 0).

Shear beam theory under the new formula (Han & 
Huang, 2013):

    

 100%b r

b

i σ σ
σ
−

= ×

 
max

3 1.5
2

sF
A

τ τ= =

 ' s

z

F y
S

τ = −

 
max

2' 2sF
bh

τ τ= =

. (18)

In type: |Sz| of the static moment (moment of area) 
Absolute value . Y of the cross section points to the 
neutral axis distance. The maximum shears stress by the 
formula (19) to give a rectangular beam (Han & Huang, 
2013)

   

 100%b r

b

i σ σ
σ
−

= ×

 
max

3 1.5
2

sF
A

τ τ= =

 ' s

z

F y
S

τ = −

 
max

2' 2sF
bh

τ τ= = . (19)

In conclusion: (a) Rectangular beam maximum shear 
stress, the new theory is increased by 33% than the 
classical theory. (b) The maximum shear stress at the 
neutral axis of the classical theory, the new theory of 
shear stress in the beam at the upper and lower surfaces. 
The upper and lower surfaces of the beam are stretched - 
plane shear stress, but the classical elasticity theory only 
by uniaxial stress state.
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Figure 3
Beam Shear and Bending Moment Diagram

a) Structure and distribution of the load beam shown in 
Figure 3(a).

b) Shear and bending moment diagram as Figure 3(c) 

and (d), (calculation omitted). 
c) The basic dimensions of the box beam in Figure

 4.

4 .   N E W  T E N S I O N  -  S H E A R 
DEFORMATION COMBINATION FORMULA 
FOR BRIDGE DESIGN
As shown in Figure 3(a) shown in multi-span statically 

determinate beams, AC and CB are connected by beams 
formed by the hinge C. The cross section of C is box-
shaped beam. Figure 4Materials for the low-alloy steel, 
Allowable tensile stress [σ] = 210Mpa [τ] = 100Mpa; Try 
checking the strength of the two theories beam.
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Figure 4          
The Basic Size Box Girder
    

Figure 5
A Stress Beam End Point y = h /2

d) Rectangular beam absolute quiet moments (Note: 
The centroid of absolute quiet moment is not zero)

 2
2 2 4 31 (0.1 0.2 0.06 0.16 ) 6.16 10 m

4 4z
bhS −= = × − × = ×

 33
3 3 5 41 1 1 (0.1 0.2 0.06 0.16 ) 4.618 10 m

12 12 12z
b hbhI = − = × − × = ×

 3
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4.618 2A
z
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I

σ ×
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 3
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max max 4

81 10 0.2 13.15
6.16 10 2

s
A

z

F y Mpa
S

τ −

×
= = =

×
 2 2 2 2

3 4 209 4 13.15 210.Ar Mpaσ σ τ= + = + × =

 2 2 6 2 6 6 6 2' 2 2 (209 10 ) 2 209 10 13.15 10 2(13.15 10 )
222.5

A

Mpa
σ σ στ τ= + + = × + × × × × + ×

=
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e) The moment of inertia for Z of the neutral axis 
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f) A positive side by the beam negative moment of 
maximum stress generated

 2
2 2 4 31 (0.1 0.2 0.06 0.16 ) 6.16 10 m

4 4z
bhS −= = × − × = ×

 33
3 3 5 41 1 1 (0.1 0.2 0.06 0.16 ) 4.618 10 m

12 12 12z
b hbhI = − = × − × = ×

 3
max

max max
96.5 10 0.2 209Mpa

4.618 2A
z

M y
I

σ ×
= = =

 3
max

max max 4

81 10 0.2 13.15
6.16 10 2

s
A

z

F y Mpa
S

τ −

×
= = =

×
 2 2 2 2

3 4 209 4 13.15 210.Ar Mpaσ σ τ= + = + × =

 2 2 6 2 6 6 6 2' 2 2 (209 10 ) 2 209 10 13.15 10 2(13.15 10 )
222.5

A

Mpa
σ σ στ τ= + + = × + × × × × + ×

=

 210 222.5 100% 6%
210

iσ
−

= × =

.

6

 .

Since σAmax = 209 Mpa < [σ] = 210 Mpa .
The beam is safe when it’s under positive stress .
g) A side beam shear stress maximum shear generated 

(Han & Huang, 2013)
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Since τAmax = 13.15Mpa < [τ] = 100Mpa.
The shear stress at the beam is safe.
H) A combination of stress (James, 2002; Luo, 2004; 

Huang,1982) strength check  under
At the upper surface of y = h/2 the upper beam end 

point, A stress state is shown in 4.3.
① Check the third strength theory
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The third strength theory can be seen to meet the 
strength requirements.

② Checking fourth strength theory

 2 2 2 2
4 3 209 3 13.15Arσ σ τ= + = + × =210.2Mpa . 

The fourth strength theory can meet the strength 
requirements

③ The check of the stress conditions combined 
strength for particle equilibrium (Han & Huang, 2013). 

Since σ'A = 222.5Mpa > [σ] = 210Mpa .
The visible beam for the end of A’s strength is not 

enough.
The σ'A percentage is greater than [σ] for
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 > 5%.

We must change the structure and re-press particle 
equilibrium conditions of stress intensity design for bridge 
is unsafe.
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