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Abstract

This paper discusses the problem of pricing on European
options in jump-diffusion model by martingale method.
We assuming jump process are more commen then
Possion process a kind of nonexplosive counting process.
Supposing that the dividend for each share of the security
is paid continuously in time at a rate equal to a fixed
fraction of the price of the security. By changing the basic
assumption of R.C.Merton option pricing model to the
assumption. It is established that the behavior model of
the stock pricing process is jump-diffusion process. With
risk-neutral martingale measure, pricing formula and put-
call parity for European options with continuous dividends
are obtained by stochastic analysis method. The results of
Margrabe are generalized.
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INTRODUCTION

Option pricing theory is always one of the kernel problems
on financial mathematics. Together with the capital asset
pricing theory ,the portfolio selection theory, the effective
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theory of market and acting issue, it is regarded as one of
the five theory modules in modern finance. Many scholars
have done a great deal of researches on option pricing
theory and obtained many results which are instructive in
financial practice. However, the appearance of important
information will cause the stock price to a kind of not
continual jumps. A mass of finance practicial has indicated
that there is a serious warp between the hypothesis of
Black-Scholes model (Black & Scholes, 1973) for the
underlying asset price and the realistic markets. Therefore,
many scholars put forward many new kinds of option
pricing models (Ball & Roma, 1993; Harold & Kushner,
2000; Gill & Wong, 2011; Cai & Mao, 2002; Kou, 2001)
by relaxing some assuming conditions of Black-Scholes
model. Option pricing theory with jump-diffusion is one of
them. But we show that real data cannot always be fit by a
geometric Brownian motion model, and that more general
models may need to be considered. The appearance of
important information will cause the stock price to a kind
of no continual jumps (Yang, Zhang, & Xia, 2013; Rieger,
2012; Yang & Hao, 2013; Angelo, 2009). When markets
are complete, the existence of optimal strategies can be
found Merton (1971), Jeanblanc and Pontier (1990).
Follmer and Leukert (2000) discussed semimartingale
model, Pham (2000) discussed continuous markets model,
Nakano (2004) discussed jump-diffusion mode. Merton
(1976) established famous jump-diffusion model when
jump process is Possion process and discussed the impact
of the dividend on the option, the Black-Scholes formula
was extended. Roll and Geske also put forward the pricing
model of the American call option with dividend. The
Black-Scholes partial differential equation was modified
after they consider paying a dividend and the equation
was solved. In a continuous setup where the evolution of
a single stock is modelled by geometric Brownian motion,
Black and Scholes derived a closed-form solution for the
value of European-style call and put options by presenting
a strategy that duplicates its payoff through continuous
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trading in the stock and the bond. One of the drawbacks
of using geometric Brownian motion as a model for a
security’s price over time is that it does not allow for the
possibility of a discontinuous price jump in either the
up or down direction.because such jumps do occur in
practice, it is advantageous to consider a model for price
evolution that superimposes random jumps on a geometric
Brownian motion.

Options are examples of exchange-traded derivative
securities—that is,securities whose value depends on the
prices of other more basic securities such as stocks or
bonds. The option price is the only variable that changes
with the market supply and demand, which directly affect
the profit and loss of the buyers and sellers, that is the
core issue of the options trading.

In this paper, We consider that price of underlying
asset price obeys jump-diffusion process, , because of the
reality the stock price jumps do not necessarily obey the
Poisson process, jump process generalized conforms to
the actual situation of stock price movement. We Establish
the option-pricing model with continuous dividends.
Pricing formula of European option is also given. The
results of existing are generalized.

1. CONTINUOUS DIVIDENTS MODELS

For instance,if the stock’s price is presently, then in the
next dt time units the dividend payment per share of stock
owned will be approximately pSd¢ when is d¢ small.To
begin,we need a model for the evolution of the price of
the security over time. One way to obtain a reasonable
model is to suppose that all dividends are reinvested in
the purchase of additional shares of the stock.Thus,we
would be continuously adding additional shares at the
rate p times the number of shares we presently own.
Consequently,our number of shares in growing by a
continuously compounded rate p.Therefor,if we purchased
a single share at time 0, at time ¢ we would have ¢” shares
with a total market value of ¢”S. It seems reasonable to
suppose that ¢”'S follows a geometric brownian motion.

It is usual to suppose that,at the moment the dividend
is paid, the price of a share instantaneously decreases by
the amount of the dividend.If one assumes that the price
never drops by at least the amount of the dividend,then
buying immediately before and selling immediately after
the payment of the dividend would result in an arbitrage;
hence, there must be some possibility of a drop in price
of at least the amount of the dividend, and the usual
assumption-which is roughly in agreement with actual

data-is that the price decreases by exactly the dividend
paid.

Let (Q,F,P ,(F))y<r) be a probability space and
{W'(1),0<¢<T} be a standard Wiener process given on a
probability space (Q,F,P",(F,),;) The market is built with
a bond B(?) and a risky asset S(f). We suppose that B(f) is
the solution of the equation

dB(¢) = r()B(¢)dt, B(0) = 1. @))

S(t)satisfies the stochastic differential equation
dS() = S(E)[(@)d + o(O)dW () + (U-1)dM(®)], S(0) =s,, (2)
where r(¢) is risk-free interest rate, u(?) is expected stock
returns, o(7) is volatility. M(¢) = N(&)-[A(s)ds, T>1>0 is the
compensated martingale of nonexplosive counting process
{N,, 0<t<T} with intensity parameter A(¢).We assume
that the filtration (F,, 0</<T) is generated by the {W(?),
0<t<T} and martingale {M(¢), 0<t<T}.

Let us consider the case when the dividend yield,rath
than the dividend payoffs,is assumed to be known.More
specifically, we assume that the stock continuously pays
dividends at some fixed rate.Following the classic paper
by Samuelson and Merton (1969), we assume that the
effective dividend rate is proportional to the level of
the stock price. Although this is rather impractical as
a realistic dividend policy associated with a particular
stock, Samuelson and Merton’s model fits the case of a
stock index opyion resonably well. The dividend payments
should be used in full,either to purchase additional shares
of stock, or to invest in risk free bonds. Consequently,a
trading strategy is said to be self-financing when its
wealth process satisfies definition 1.

Definition1 (Yuan, 2008) A strategy {a(t),b(f)}is
called self-financing if wealth process

V() = a()S(¢) + b(¢)B(¢) is satisfied

d(¢) = a(®)dS(¢) + b(t)dB(¢) + p(Ha()S(f)dr . 3)

The continuous dividend rate is p(¢), it follows from
(1),(2),(3) that

d¥(@) = {a(nS@)(u(?) + p(1) + bOrOB(1) }dr+

a()S(no()d W (t) + a(@)S(6)(U-1)dM(?). 4)

LetV'(t) = efJO"(S)dXV(t) , S (t) = eij”r(s)ch S(t),we can prove

the following proposition.

Proposition 1 The following are equivalent

(1)A strategy {a(?), b(¢)}is called self-financing.

(2) Wealth process satisfied

dV () = a()S" (£)(a(H)dW(t) + (U-1)dM(r)), where

x t t t)—r(t
W0 =00+ [ 8)ds, o =L o op
‘ o(t)

Proof Applying Ito’s lemma yield (Yang & Luo,

2006), we have

A0y =5"Oa(t) (u(t)+p(t)-r(t))dt+o(e)dW () + (U -DHAM (1) ], (5)

) u(@)ytp()-r(t)
let, W,= W, + [ 0(s)ds, 0(t) =~ o(p)

equivalently

dr @y =a(t)S @) (o (t)dW )+ U -DdM (1)).

, 0<t<T(5)
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ok ' s)ds _x *
Proposition 2 Let S (¢) = ej ) S (t). We have {S"(¢)} is satisfied

ds"()=8"(1) (o ()dW(r)+(U—1)dM(t>). 6)
Proof For S**(I)=ej s (/)and S” (H=e I S(t)
using Ito’s lemma yield, we have

4™ (1) = hdS" (1) + p(6)e” VS (0yde (7)

45" () = e a0 - re)e W s ydr - ®)
Together with (2), (7) and (8), we have

ds” () =S" O (u(t)+ p(t)-r(2))dt + o (6)dW () + (U -1dM (1) ] , 9)
_ u@tp()-r(1)

let, VVt = I/Vt,k + Ito G(S)ds, 0(1) O'(f)

, 0<t<T(9) equivalently

dS™ (@) =S" () (o (1) dW (1) + (U -DdM (1)).
Applying Dolease-Dade exponential formula (Duffie, 1996), stochastic differential equation (6) equivalently

. WO 1
" ()=, HU,. exp{——j

N()

so S(t)=s,] [ U, exp{j [r(s)— p(s)— —a 2 (s)]ds +(1— E(U))j A(s)ds + j

i=1
dpP T
Proposition 3 Let E—exp{ J. O(s)dw (s )——J.

i (S)ds}and E(U) be bounded,then self-financing

- Tr(,x')d.\‘
wealth process is V, =E, [e k VT|E)jP is risk-

neutral martingale measure.

Proof Applying Girsanov theorem, W(7) = W'(¢) + |
O(s)ds is standard Wiener process under the martingale
P.M(#)(T>£>0) is P martingale.

For, because o(¢) is integrable function,and E(U) is

2(s)ds+(1- E(U))j ﬂ(s)ds+j

s)dW ()} . (10)

s)dW (s)}.

bounded,we have (1) = e"jo”(s)
follows that V(0) = E.(V'(T)|F,).Finally,

K) _ EP (e-[ll r(.\‘)d,\'VT |E)J

d"V(t) is P martingale.It

2. OPTION PRICING FORMULA WITH

CONTINUOUS DIVIDENT

Proposition 4 Assume that the dynamics of a bond B(¢) and a
risky asset S(¢) are given by (1), (2), maturity date 7, exercise
price K. Then the price of European call option satisfy

C(0,5,) = 3" BT)ELsg(d) expi-[ [p(s)+ (EU) DA ] [U, - Ke T0(d,)]

n=0

SOHU

In—=— +(1- E(U))j A(s)ds + j [

where d, =
Proof Since V*(t) _

€(0,5,)= £fe

J [ o (s)ds

t
e_for(s)dsV(t) is the martingale under risk-neutral martingale measure, then

ds +
(S(T)-K)'|F,]
- orr(s)d.v - OTr(.v)d.v
= E{e I Silis ok, |FO} —KE [e I g o) |FO}

(1)
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Let S” —SOHU exp{j [1(s)— p(s) — —0'2( )1ds +(1 - E(U))j x(s)ds+j s)dw (s)}.

i=1

E[ejorr(”dssrl{sp,q IF, } ZP (T)E(e e

/S >K})

i (T)E(sOHUexp{ [ o)+ E©)-DA(s)ds}.

exp{— *(s)ds—y- } -
I I 2"' ds \/27[_[0 o’
- imm(sof[v,. expi=] [p(s) + (EU)~DA()s}.
. v+ o (s ds>2
_expi= y+I°G ( )
\/Zﬂj.
d+| o (s)ds
—ZP(T )E(SOHU expi— f [o(s)+(EU)-1)A(s)]ds}D( , ), (12)
0'2 s)ds

SHV

1,
where d =1In lKl +(1- E(V)).[ /l(s)ds+J.{ ,o(s)—Ea (S):ldS

~ Tr(.Y)dS _ rr(.v)ds‘ =
KE{C h I{STzK} |F0} =Ke : ZP”(T)E[I{S”-ZK)]

n=0

= Ke Z P (T)E[P(S; > K)]

n=0

ke bt ZP(T)E[P( j s)dw(s) < d)]

ke b > P(1) E[o(—— )] . (13)
=0 J o’ (s)ds

SOHU

+(1- E(U))j ﬂ(s)ds+j[ p(s)+62(s)}ds
1 \/LTGZ(S)dS \/LTGZ(S)CIS ’

d, :W:dl—ﬂjaz (s)ds.

Together with (11), (12) and (13), we have

C(0,5,)= X B.ATIE s, @(d ) exp - [p(s)+ (EW)~DA(sYIds)] [U, ~ Ke " 0(d,)],

Proposition 5 (put-call parity relation) Assume
that the dynamics of a bond B(¢) and a risky asset S(¢) are
given by (1), (2), maturity date 7,exercise price K. Then .
the put-call parity relation may be rewritten as Proof since {S" (1), 0</<T} is P martingale, we have

C(t,S,)-P(t,S,) = e*fl p(S)dsSt ~ Keij' rs)ds
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V0 =e V0. 5 0 =e s

We find that put-call parity relation is not affected
by the jump process of stock price, but it is affected by
continuous dividends. We can useput-call parity to find the
price of a European put option on a stock with the same
parameters as earlier.When the continuous dividend rate
p(f) = 0 and nonexplosive counting process {N,, 0<t<T}
is Possion process with intensity parameter A(f) = A, The
results of this article are Merton R C’s. (1976) conclusion.

In this paper, we assume that the dividends that will
be paid to the shareholders during an option’s lifetime can
be predicted with certainty. We discuss arbitrage pricing
within the option pricing model under the assumption that
the stock upon which an option is written pays dividends
during option’s lifetime. Because jumps do occur in
practice, it is advantageous to consider a model for price
evolution that superimposes random jumps on a geometric
Brownian motion. Assumption that jump process is a
count process that more general than Poisson process. It
is established that the behavior model of the stock pricing
process is jump-diffusion process. Pricing formula of
European option and put-call parity relation are also
given.
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