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Abstract
With the exploration of natural resources and the research 
on oceanography in the deep sea obtained more and more 
attention, in the recent years, the pressure hull of the 
submersibles has been widely studied and used in many 
states. In order to the continuing design and assessment 
on it effectively, the paper summarizes the design method, 
the structural feature and the material selection of this 
object.
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INTRODUCTION
When submerged depth is 6000 meters, the operation field 
of submersible covers more than 95% of the ocean floor, 
as shown in Figure 1. In recent years, a lot of research and 
experiment of submersible were carried out, and obtained 
a lot of achievements. The autonomous underwater robot 
without cable, whose working depth was up to 6000 
meters, has been successfully developed in China. On July 

28, 2011, the manned submersible named “JiaoLong” with 
maximum working depth of 5188 meters was tested well, 
which indicates operation scope beyond 80% of the ocean 
floor and a symbol of Chinese dive technical breakthrough 
(Ma, 2012; MacKay, 2012).
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Figure 1
The Relationship Between Ocean Depth and the 
Corresponding Covering Ratio of Floor

The submersible consists of the outer hull meeting the 
requirement of hydrodynamic and the pressure hull providing 
atmospheric pressure space for crew and equipment. Pressure 
hull accounting for 25%-50% of the submersible total weight, 
as the main provider of buoyancy working on the submersible, 
construct a watertight space, which ensures a relatively 
changeless internal pressure during the process of diving 
(Reynolds, Lomacky, & Krenzke, 1973). Thus, the properties of 
pressure hull, such as yield strength, the stability, local strength 
on crack and fatigue strength, affect the submersible overall 
performance directly.

In this paper, the survey of the existing pressure hull was 
summarized with respect to the design method, structural feature 
and specific material. The merits and demerits of these properties 
were listed and compared, and the index of the assessment 
checking the quality of submersible was proposed, which has 
important significance for the consequent study of pressure hull.
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1.  THE DESIGN OF PRESSURE HULL
The items of design concerning pressure hull consist 
of structural design, material selection, and assessment 
of stress distribution and stability (Fan, 2008). The 
influencing factors, including buoyancy coefficient (the 
ratio of the weight and tonnage), the requirement of 
internal layout and manufacturing process, failure modes, 
working depth, safety factor and so on, should be taken 
into account. In general, the assessment of the pressure 
hull’s performance could be evaluated from four aspects: 
buoyancy coefficient, the structural strength, the ratio of 
internal space occupancy and hydro-dynamic resistance. 
The design process of pressure hulls as shown in Figure 
2, which could improve the work efficiency, shorten the 
working period, simplify logistical support, and reduce 
the cost of development effectively. The main directions 
of the existing study include: reducing weight (improve 
buoyancy coefficient), increasing the ratio of internal 
space occupancy and reducing hydro-dynamic resistance.

 select structural form of pressure shell   

select material of pressure shell         

determine safety factor of pressure 
shell    

design structural size of pressure shell      

determine structural buoyancy 
coefficient of pressure shell 

check structural strength of pressure 
shell 

Figure 2
The Design Process of Pressure Hull

A lot of design specifications for pressure hull have been 
proposed, and various specifications’ contents were not same, 
which making the calculation results different. J. Odland 
analyzed the specification of DNV submersibles and underwater 
system carefully, and proposed that the specification, which 
gave the strict calculation method, the limited states and 
applicable condition about the structure of column hull, conical 
hull, spherical hull, hemispherical hull, qusi-spherical hull, 
ellipsoid hull, frame, bulkhead, etc. The limited states of stress 
for spherical hull and conical hull of the small submersible 
was proposed by Lloyd’s Register’s “Submersible structure, 
classification, regular inspection specification”. A. Harry studied 
the design specification of pressure hull briefly. Cha Huanfeng 

calculated the welded cylindrical hull according to the four 
specifications: DNV, ECCS, API Bull, ASME. 

2.  THE STRUCTURE OF PRESSURE 
HULLS 
The pressure hull structural forms of submersible include: 
spherical structure, ellipsoidal structure, cylindrical 
structure, the toroidal structure and composite structure, 
as shown in Figure 3. Spherical structure and cylindrical 
structure are generally adopted by existing submersibles. 
Following is a brief analysis for the characteristics of 
these structures (Zhu, 1992; Shi, & Li, 1991; Liang, 2006; 
Ness & Simpson, 2000).
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Figure 3
Structural Classification of Pressure Hulls
2.1  Spherical structures
Spherical hull is highly symmetrical thin pressure 
structure, and the stress of the each part is equal under 
uniform pressure, indicating that it has good performance 
on strength properties. The optimum buoyancy coefficient 
and stability for spherical hull can be got. The stress 
calculated from the spherical hull is half of that calculated 
from the cylindrical hull of the same diameter, and the 
ratio of the surface area and volume is small, which make 
the material fully utilized (Cheng, 2012). However, its 
rate of the internal space occupancy is lower, which is 
not conducive to the cabin layout. Even though spherical 
volume will be added with increasing the diameter, it will 
amplify the resistance of movement and reduce the speed 
of the submersible.
2.1.1  Single-Sphere Structure
The pressure hull of single-sphere structure has been 
widely used (Figures 4-5). In addition to the above 
common advantages,  the structure is easy to be 
manufactured and be cut for hatches, portholes, and cable 
grommet hole, and convenient to carry out the stress 
analysis (Pan, 2010).
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Figure 4
“Deep-Sea 2000” Submersible

Figure 5
“Alvin” Submersible
2.1.2  Multi-Spheres Structure
Multi-spheres structure is composed of two or more 
isolated balls, which increases interior space to a certain 
extent, ensures better shape and reduces its hydro-
dynamic resistance. The submersible “Deep investigation” 
and “DSRV”  is the typical application, as shown in Figure 6- 
7.

Figure 6
“Deep Investigation” Submersible         

Figure 7
 “Dsrv” Submersible
2.2  Cylindrical Structure
Cylindrical pressure hull is relatively easy to be 
manufactured. Its space utilization is satisfied, and internal 
cabin is easy to layout. The disadvantage of this structure 
exists, such as, large buoyancy coefficient, the weak hull 
with welded internal additional ribs, the lower material 
utilization, and the poor overall stability. In addition, the 
peripheral stress is twice than the axial portion, and the 
bending stress at the ends and transition region of the 
cylindrical hull is obvious.
2.2.1  Straight Cylindrical Structure
The internal structure of straight cylindrical is divided 
into unribbed structure (Figure 9-10) and ribbed structure, 

which is shown in Figure 8. The advantages of stiffener 
structure generally include excellent hydrodynamic 
performance, better internal arrangement, lighter external 
structure and lower construction costs. The smoothly 
unribbed cylinder sometimes is used by pressure hull. The 
stability of cylindrical portion can be guaranteed by hull 
thickness when the diameter, the length and the external 
pressure are small. Ribbed structures can be divided into 
inflatable tube ribbed structure (Figure 11) and ring ribbed 
structure (Figure 12-13) (Fathallah, Qi, Tong, & Helal, 
2014).

 

stronger structure   

ribbed hull   

unribbed hull   

shell with 
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Figure 8
Stronger Structure of Cylindrical Hull

Figure 9
Unribbed Cylindrical Hull  

Figure 10
“Aliminant” Submersible

Figure 11
Cylindrical Hull With Inflatable Tube Shaped Rib

Figure  12
Cylindrical Hull With Ring Rib
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Figure 13
 “Aluminan” Submersible
2.2.2  Arc Shaped Cylindrical Structure
Arc shaped cylindrical structure, developing from straight 
cylinder, can increase the strength of the hull, avoid 
the large stress of hull’s middle part, and also reduce 
hydro-dynamic resistance (Burcher & Rydill, 1994). The 
structure is similar to the ellipsoid structure, because the 
stress concentration at both ends does not happen easily, 
and it is also conducive to the spatial arrangement (Figure 
14).

Figure 14
Curved Cylindrical Hull
2.2.3 Corrugated Cylindrical Structure
Corrugated cylindrical structure is shown in Figure 15 
and 16. The hull of this structure can be manufactured in 
the form of segments, so the productivity is improved. 
Meanwhile, each segment can keep changeable shape 
according to the specific requirement. For instance, Ross 
made the segment to be the tapered section. Spherical 
segment is better than conical section in theory. It is 
obtained from the corresponding test that spherical 
segment has good performance on the aspect of the anti-
extrusion (Blachut & Smith, 2008).

Figure 15
Corrugated Cylindrical Hull  

Figure 16
Segmented Corrugated Cylindrical Hull

2.3  Ellipsoidal Structure
Ellipsoidal structure is a compromise of cylindrical 
structure and spherical structure，whose section is similar 
to an ellipse. It’s high space occupancy rate is conducive 
to the layout of the cabin. Both ends and middle part 
of ellipsoidal structure like a sphere, and the interval is 
shaped smoothly. This kind of structure can avoid stress 
concentration by making the whole surface of pressure 
hull have the equal stress. Furthermore, the shape of the 
structure is better streamlined and helps to reduce the 
resistance of water (Ma & Cui, 2005; Ma & Cui, 2004; 
Liang & Chen, 2004).
2.3.1  Oval structure
Pressure hull with oval cross section has appropriate 
buoyancy coefficient. On a submersible, this coefficient 
is as important as structural strength. Optimizing 
structure could cut down the weight in order to make 
the submersible bear more load and travel further in the 
distance. Oval structure is better streamlined, it can reduce 
not only the resistance of water greatly to improve the 
speed and flexibility of the submersible, but also energy 
consumption. Secondly, this kind of structure is conducive 
to the arrangement of internal space and getting larger 
space occupancy rate. Pressure hull with elliptical shape 
has the same character of thin spherical hull stress. It 
can avoid bending caused by stress concentration and be 
convenient to install penetrating structure through the 
hull which can improve the stability of submersibles. 
As shown in Figure 17, submersible SP-350 utilizes 
the pressure hull with oval cross section. However, the 
structure costs too much, and it’s hard to analyze  its stress 
(Zhu & Wu, 2002).

Figure 17
“SP-350” Submersible
2.3.2  Water-Drop Shaped Structure
Water-drop or needle shaped structure (as shown in Figure 
18) is the best streamlined shape, and has the highest 
propulsive efficiency. It’s appropriate for the submersible 
to sail in high speed, so it will be the main orientation 
of efforts to improve the performance of submersible. 
However, the structure can cause flexural stress easily, 
especially at the tip of the hull.

Figure 18
Teardrop Shaped Hull
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2.4  Toroidal structure
Toroidal structure is similar to the shape of swimming lap, 
which can reduce its buckling pressure to the minimum. 
Figure 19 shows the pressure hull is formed by a circular 
section spinning on an axis. Figure 20 shows the pressure 
hull is formed by an oval section spinning on its central 
axis at a certain angle γ(in Figure 21, γ=0; in Figure 
22,γ=90). In the description of this structure, r represents 
radius of section, and R represents the radius around the 
axis (Blachut & Jaiswal, 2000; Qu, 2012; Blachut,  2004).

Figure 19
Toroidal Hull With a Circular Section                                

Figure 20
Toroidal Hull With Elliptical Cross Section At An 
Angle γ

Figure 21 
Toroidal Hull With Elliptical Cross Section at an Angle 0

Figure 22
Toroidal Hull With Elliptical Cross Section  at an 
Angle 90°
2.5  Composite Structure
Composite structure is consisted of two or more kinds 
of hull, which makes up for the shortcomings of single 
kind. The existing pressure hulls of submersibles are 
mainly sphere-cylinder and cone-column composite 
structures, combining the advantages of spherical hull, 
cone hull and cylindrical hull, which makes them have 
the characteristics of equal stress under uniform pressure, 
larger space occupancy rate and good hydrodynamic 
performance.
2.5.1  Sphere-Cylinder Composite Structure 
Now sphere-cylinder composite structure is the most 
common structure of the submersibles. The below picture 

shows a streamlined pressure hull which consists of a 
column and two spheres (Fig. 23 “Deep Sea”). Usually 
the sphere-cylinder structural hull ensures the stability of 
the cylindrical hull by arranging a spiral rib plate (Figure 
24 “beaver”). Besides, some sphere-cylinder structural 
hull is composed of a lot of concatenation spheres (Figure 
25). This kind of pressure hull is a combination of the 
advantages of cylindrical and spherical structure, so it has 
a high strength and high space utilization.

Figure 23
 “Deep-Sea” Submersibles                   

Figure 24
 “Beaver” Submersible

Figure 25
Composite Cylindrical Hull
2.5.2  Cone-Cylinder Structure
Pressure hull with cone-column structure is composed of 
a conical head and cylinder, such as “PC-4” submersible 
(shown in Figure 26). The “Qian die” submersible looks 
like a lentil. This kind of hull is not used widely because 
of complex calculation and difficult machinability.

Figure 26
“PC - 4” Submersible

3.  THE SELECTION OF THE MATERIAL 
IN THE PRESSURE HULL
Material used on the pressure hull is divided into two 
categories, metal and nonmetal. High-strength alloy steel 
is mostly used in the depth of more than 2000 meters. 
Mild steel or composite material is mostly used in the 
depth of 1000 meters. Reinforced plastic is mostly used 
in the depth of less than 1000 meters (Table 1). When 
choosing the material used in hull, metal corrosiveness, 
stress corrosion cracking, low cycle fatigue, metal creep, 
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material brittleness and many other factors must be 
considered (Figure 27) (Fathallah,  Qi,  Tong & Helal1, 
2014;Vinson, 1993).
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Figure 27
Considered Factors for Selecting Material

For the selected materials, the cost of making and the 
approach of obtaining have the same importance. Pressure hull’s 
materials usually adopt steel, aluminum alloy, titanium alloy, 
reinforced plastic and so on (Figure 28).

Pressure hull mostly adopts steel. HY80, the most 
commonly used high strength steel, contains nickel, chromium, 
molybdenum and low carbon, so it has good ductility and 
toughness. Compared with the former, HY100 steel has greater 
yield strength and own the ability of withstanding repeated 
impaction, and avoids crack’s expansion at low temperature. 
HY130 steel has good advantages on strength and toughness 
properties, but it is relatively difficultly manufactured for the 
large submersible manufacturing.

Titanium alloy has high strength, good corrosion resistance, 
available ductibility and so on, especially the resistance to 
compression and tension. However, its application is limited 
because of its high cost and complex manufacture process. With 
the further improvement of the mechanical properties of titanium 
alloy, machinability improvement and cost reduction, the 
titanium alloy will be widely used in pneumatic hull, containers, 
buoys and other submersible hulls.
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Figure 28
The Several Kinds of Common Hull Materials

The density of aluminum alloy is the three times as iron, and 
it has the characteristics of high strength and good plasticity. 
Superficial oxidation takes place on the aluminum rapidly, but 
the surface oxidation layer can inhibit its further oxidation. In 
addition, aluminum alloy still has the very high strength and 
ductibility at the low temperature. However, once the aluminum 
alloy cracking occurs, the structure is rapidly destroyed under 
the tiny energy. In addition, the cost of aluminum alloy is greatly 

higher than steel.
The reinforced plastic is widely used in submersibles, which 

works in the depth of less than 1000 meters. Especially, silicate 
glass, carbon fiber reinforced plastic, acrylic plastic and ceramic 
are promising materials, but because of the lack of robustness 
and connectivity with adjacent components, these materials are 
not widely used at present.
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Table 1
The Form and Material of Typical Pressure Hull

the Name of the Submersible Depth(m) Material

Star-Ⅰ 60 A212B steel

Underwater Unmanned 
Submersible 60 Glass fiber reinforced 

plastic

Tiny Diver 75 A-36 welded steel

AUV 180 plastic

Kuroshio-Ⅱ 200 Low carbon steel
（SM-41）

Nekton -A 300 Low carbon steel

PC-14 360 A516( 70) steel

SP-350 400 Forging steel

Deep-sea 600 High strength 
structural steels

Castor Fiber 600 HY-100

Star-Ⅲ 610 HY-100

Benthic Rover 1000 Polypropylene plastic

DS RV-Ⅰ 1050 HY-140

Dark Star -4000 1200 HY-SO

DS RV-Ⅱ 1500 HY-140

Submersible Shinkai-6500 2000 NS90 steel

Deep Investigation 2400 (18% nickel) 200 KSI 
alloy steel

Alvin 3600 Titanium alloy 621.08

Aluminant 4500 Aluminum alloy
（7079-T6）

Nautile 6000 Titanium alloy

Dark Star-2000 6100 HY-140

Archimedes 11000
Nickel - chromium - 
molybdenum forging 
steel

CONCLUSION
The overview of the structural design and the material 
selection concerning submersible pressure hull was 
summarized. Overall, the merits of submersible structure 
are evaluated from four aspects of buoyancy coefficient, 
the structure strength, the internal space occupancy rate 
and water resistance. The primary indicators, evaluating 

the operation level and flexibility of the submersible, are 
the internal space occupancy rate and water resistance. 
Besides, material selection criteria of pressure hull should 
pay attention to the superior mechanical properties and 
chemical properties, such as high strength and corrosion 
resistance and so on.

For the existing various hulls, the shortcomings still exist. 
Such as, stress concentration and the low space occupancy rate. 
Therefore, the study of a new type of hull structure is still very 
urgent. Furthermore, the new materials of pressure hull should 
focus on combining the advantages of metal and nonmetal, 
which could ensure the submersible to work long underwater, 
and provide important support for the design of deep-sea 
submersibles.
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